• Title/Summary/Keyword: 강도/응력비

Search Result 1,169, Processing Time 0.026 seconds

Nonlinear FE Analysis of RC Shear Walls (철근콘크리트 전단벽의 비선형 유한요소해석)

  • 곽효경;김도연
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.293-308
    • /
    • 1999
  • 이 논문에서는 패널, 깊은 보 그리고 전단벽과 같이 평면응력상태하에 있는 철근콘크리트 구조물의 비선형 유한요소해석에 있어서의 직교이방성 콘크리트 구성 모델의 적용성을 보여준다. 등가의 일축 변형을 개념을 토대로 콘크리트의 구성 관계가 주변형률 축과 일치하고 하중이력에 따라 회전하는 직교하는 축에 대해 제시된다. 제안된 모델은 이축 압축응력상태와 인장-압축 응력상태에서 각각 압축강도의 증가와 인장 저항력의 감소효과를 보여주는 이축 파괴영역의 정의를 포함한다. 인장균열이 발생한 후, 콘크리트의 압축강도의 감소효과가 제시되고, 인장강화효과로 알려진 철근에 의해 지지되는 콘크리트의 인장응력이 고려된다. 평균응력과 평균변형률 개념을 사용하여 힘의 평형, 적합조건 그리고 철근과 철근을 둘러싼 콘크리트 사이의 부착응력-슬림 관계를 토대로 인장강화효과를 모사하기 위한 모델이 제안된다. 유한요소 모델에 의한 예측은 유용한 실험자료와의 비교에 의해 입증된다. 이 논문에서는 해석결과와 이상화한 전단 패널실험으로부터 얻어진 실험값의 비교연구가 수행되고, 제안된 모델의 타당성을 보여주기 위해 서로 다른 응력상태하의 전단 패널 보와 벽체의 힘-변위 관계를 평가하였다.

  • PDF

Torsional Behaviour of Concrete Filled Circular Steel Tube Column Considering Confinement Effect (구속효과를 고려한 콘크리트 충전 원형강관 기둥의 비틀림 거동)

  • Yun, Bok Hee;Lee, Eun Taik;Park, Ji Young;Jang, Kyong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.529-541
    • /
    • 2004
  • Concrete filled steel tube structures were recently used in constructing high-rise buildings due to their effectiveness. Studies on concrete filled steel tubes have been focused on the experiments of uni-axial compression and bending and eccentric compression. There were also a few studies that investigated CFT member behavior under combined compression and torsion. The behavior of a circular CFT column under combined torsion and compression was theoretically investigated, considering the confinement of steel tubes on the concrete, the softening of the concrete, and the spiral effect, which were the dominant factors that influenced compression and torsion strength. The biaxial stress effects due to diagonal cracking were also taken into account. By applying those factors to compatibility and equilibrium conditions, the basic equation was derived, and the equation could be used to incorporate the torsional behavior of the entire loading history of the CFT member.

Prediction of Equivalent Stress Block Parameters for High Strength Concrete (고강도 콘크리트의 등가응력 매개변수 추정에 관한 연구)

  • Lee, Do Hyung;Jeon, Jeongmoon;Jeong, Minchul;Kong, Jungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.227-234
    • /
    • 2011
  • Recently, a high strength concrete of more than 40 MPa has been increasingly used in practice. However, use of the high strength concrete may influence on design parameters, particularly stress distribution. This is very true since the current everyday practice employs equivalent rectangular stress distribution that is derived from normal strength concrete. Subsequently, the stress distribution seems to be reevaluated and then a new distribution with new parameters needs to be suggested for the high strength concrete. For this purpose, linear and multiple regression analyses have been carried out in term of using experimental data for the high strength concrete of 40 to 80 MPa available in literatures. Accordingly, new parameters associated with the stress distribution have been proposed and employed for the design of flexural and compressive members. Comparative design examples indicate that designs with new parameters reduce section dimensions compared to those with the current code parameters for concrete strengths of 40 to 70 MPa. In particular, for compressive members, design with new parameters exhibit conservative compressive force compared to those with the current code parameters.

Stability Estimation of the Closely-spaced Twin Tunnels Located in Fault Zones (단층대에 위치한 근접병설터널의 안정성평가)

  • Hwang, Jae-Seok;Kim, Ju-Hwan;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.2
    • /
    • pp.170-185
    • /
    • 2018
  • The effect of fault on the stability of the closely-spaced twin tunnels located in fault zones was investigated by numerical analyses and scaled model tests on condition of varying widths, inclinations and material properties of fault. When obtaining the strength/stress ratios of pillar between twin tunnels, three different stresses were used which were measured at the middle point of pillar, calculated to whole average along the pillar section and measured at the left/right edges of pillar. Among them, the method by use of the left/right edges turned out to be the most conservative stability estimation regardless of the presence of fault and reflected the excavating procedures of tunnel in real time. It was also found that the strength/stress ratios of pillar were decreased as the widths and inclinations of fault were increased and as the material properties of fault were decreased on condition using the stresses measured at the left/right edges of pillar. As a result of scaled model tests, it was found that the model with fault showed less crack initiating pressure than the model without fault. As the width of fault was larger, tunnel stability was decreased. The fault had also a great influence on the failure behavior of tunnels, such as the model without fault showed failure cracks generated horizontally at the left/right edges of pillar and at the sidewalls of twin tunnels, whereas the model with fault showed failure cracks directionally generated at the center of pillar located in the fault zone.

Stress-Strain Relations of Concrete According to the Confining Conditions (구속 조건에 따른 콘크리트 응력-변형률 관계)

  • Im, Seok Been;Han, Taek Hee;Han, Sang Yun;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.743-752
    • /
    • 2006
  • Confined concrete has enhanced strength and ductility compared with unconfined strength. Cause of these merits of confined concrete, many researches have been performed for confining effects of concrete and been studied in many fields. Although many researches about concrete confined by FRP sheets have been studied recently, it is difficult to apply concrete confined by FRP in real structures because FRP is a brittle material. In this study, the enhanced strength and ductility of concrete which is confined by steel tubes or steel plates were investigated. Fifty one specimens were tested and each specimen has different confining condition. Test results showed enhanced ductility and strength of confined concrete and concrete models were suggested under various confining conditions by regression of experimental data.

Behavior of Composite Structure by Nonlinearity of Steel-concrete Interface(II) -Behavior of Steel-Concrete Interface- (강·콘크리트 경계면의 비선형성에 따른 합성구조체 거동 (II) -강·콘크리트 경계면의 거동 특성-)

  • Jeong, Youn Ju;Jung, Kwang Hoe;Kim, Byung Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.509-518
    • /
    • 2003
  • In this study, we carried out nonlinear analysis according to various interface nonlinear models by interaction magnitude, and analyzed interface behavior such as distribution of tangential traction and relative slip in steel-concrete composite structure. As a result of this study, tangential traction and relative slip of interface is rapidly increased at the steel plate-concrete interface, especially at the neutral region, rather than tensile, as opposed to the T beam-concrete interface. In transverse direction, it has gradually reduced to go outside from loading position. In longitudinal direction, it was minimum at the central region near the loading point, maximum at 0.6-0.7L from support and gradually reduced as it nears support. Moreover, as the load is increased, the failure of interface gradually expands from the maximum tangential traction position to the entire region. It is expected to provide fundamentality for interface behavior and load-carrying mechanism, and for the design of bending and shear connection of steel-concrete composite structure.

Strength Characteristics of Sand in Torsion Shear Tests (비틀림전단시험에 의한 모래의 강도특성)

  • Nam, Jeong-Man;Hong, Won-Pyo;Han, Jung-Geun
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.149-162
    • /
    • 1997
  • A series of torsion shear tests were performed to study the strength characteristics of sand under various stress paths during rotation of principal stress. These results can be classified into two groups of 25cm and 40cm according to the height of specimen, and toy que was applied only in the clockwise direction. In this study, strength characteristics of sand for the principal stress ratio in torsion sheartests were investigated and their results were compared with Lade's failure criterion. And the effect for specimen was considered. From the results of tests, friction angle of sand was affected by the deviatoric principal stress ratio $b:(\sigma_2 -\sigma_s)/(\sigma_2, -\sigma_3)$Failure strength of sand was determined not by the stress paths but by the current stress state. From comparison of specimens on 25cm and 40cm height, effect of end restraint could not be found. In the test where b is over 0.5 due to extension force, necking phenomenon by the strain localization was found.

  • PDF

Torsional Resistance of RC Beams Considering Tension Stiffening of Concrete (콘크리트의 인장강성을 고려한 RC보의 공칭비틀림강도)

  • 박창규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.24-32
    • /
    • 2002
  • The modified compression field theory is already applied in shear problem at some code(AASHTO-1998) partly. Nominal shear strength of concrete beam is sum of the concrete shcar strength and the steel shear strength in the current design code. But Torsional moment strength of concrete is neglected in the calculation of the nominal torsional moment strength of concrete beam In the current revised code. Tensile stress of concrete strut between cracks is still in effect due to tension stiffening effect. But The tensile stresses of concrete after cracking are neglected in bending and torsion In design. The torsional behavior is similar to the shear behavior in mechanics. Therefore the torsional moment strength of concrete should be concluded in the nominal torsional moment strength of reinforced concrete beam. This paper shows that the torsional moment strength of concrete is caused by the average principal tensile stress of concrete. To verify the validity of the proposed model, the nominal torsional moment strengths according to two ACI codes (89, 99) and proposed model are compared to experimental torsional moment strengths of 55 test specimens found in literature. The nominal torsional moment strengths by the proposed model show the best results.

A Study on the Strength Safety of a Composite Hydrogen Fuel Tank for a Vehicle (차량용 복합소재 수소연료탱크의 강도안전성에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.37-41
    • /
    • 2011
  • This paper presents the strength safety of a hydrogen gas composite fuel tank, which is analyzed using a FEM based on the criterion of US DOT-CFFC and Korean Standard. A hydrogen gas composite tank in which is fabricated by an aluminum liner of 6061-T6 material and carbon fiber wound composite layers of T800-24K is charged with a filling pressure of 70MPa and a gas storage capacity of 130 liter. The FEM results indicated that von Mises stress, 255.2MPa of an aluminum liner inner tank is low compared with that of 95% yield strength, 272MPa. And a carbon fiber stress ratio of a composite fuel tank is 3.11 in hoop direction and 3.04 in helical direction. These data indicate that a carbon fiber gas tank is safe in comparison to that of a recommended criterion of 2.4 stress ratio. Thus, the proposed composite tank with 130 liter capacity and 70MPa filling pressure is usable in strength safety.

Effects of an Anisotropic Consolidation on the Undrained Shear Strength of a Normally Consolidated Clay (정규압밀점토의 비배수 전단강도에 대한 이방압밀효과)

  • 강병희;윤호창
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • In-situ soil is anisotropically consolidated at rest, and the coefficient of earth pressure at rest $K_0$ is dependent on the properties of soil and stress history. In order to estimate roughly the in-situ undrained shear strength of a $K_0$-anisotropically normally consolidated clay from isotropic consolidated undrained test, consolidated undrained shear testy with four different consolidation pressure ratios ($K={\sigma}'_{3c}/{\sigma}'_{1c}$) were performed and test results showed K-$\alpha$ relationship, representing the strength ratio $\alpha$ as ($S_u/{\sigma}'_{1c})_{CKU}=\alpha(S_u/{\sigma}'_{1c})_{CIU}$. Strength ratio u increases with increasing consolidation pressure ratio. And the angle of internal friction $\Phi'$and angle ratio $\Phi'_{CKU}/\Phi'_{CIU}/$ are increased with the increament of K-value.

  • PDF