• 제목/요약/키워드: 강건한 특징점

검색결과 76건 처리시간 0.03초

얼굴 영상에서 유전자 알고리즘을 이용한 눈동자 검출 (Detection of Pupils using Genetic Algorithm in face Images)

  • 이찬희;신상호;우영운;장경식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.444-447
    • /
    • 2008
  • 사람의 얼굴은 표정, 조명 등에 따라 다양한 형태 변화가 있어 입력 영상마다 대표 특징을 정확히 찾는 것은 어려운 문제이다. 얼굴의 많은 특징 점 중에서 눈동자 부분은 얼굴 인식 등 다양한 부분에 있어서 얼굴 영역의 특징 점으로 가장 많이 이용되는 특징 점들 중 하나이다. 본 논문에서는 다양한 조명하에서의 단일 얼굴 영상에 대해 유전자 알고리즘과 템플릿 정합을 이용하여 빠르게 눈을 검출하는 방법을 제안한다. 조명과 배경에 강건한 검출 성능을 얻기 위해 눈동자 후보점을 찾아서 초기 개체군 생성에 이용하였으며, 각각의 개체는 템플릿의 기하학적 변환 정보로 구성되어 템플릿 정합에 의해 눈동자가 검출된다.

  • PDF

Haar-like feature를 이용한 얼굴 검출과 추적을 위한 Lucas-Kanade특징 추적 (Face detection using haar-like feature and Tracking with Lucas-Kanade feature tracker)

  • 김기상;김세훈;박진영;최형일
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.835-838
    • /
    • 2008
  • 본 논문에서는 얼굴 영역을 자동으로 검출하여 실시간으로 얼굴의 특징 짐을 추적하는 방법을 제안한다. Haar-like feature를 이용하여 얼굴 영역을 자동으로 추출하였으며, 회전에 강건한 KLT 알고리즘을 적용하여 얼굴의 특징 점들을 추출하였다. 그리고 실시간으로 얼굴의 특징점을 추적하기 위해 Lucas-Kanade 특징 추적 알고리즘을 사용하였다. 실험결과를 통하여 회전과 움직임에 강건하게 얼굴 영역을 검출하고 추적되는 것을 확인하였다.

  • PDF

텍스처 기반의 눈 검출 기법 (Eye Detection Based on Texture Information)

  • 박찬우;박현;문영식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.315-318
    • /
    • 2007
  • 자동 얼굴 인식, 표정 인식과 같은 얼굴 영상과 관련된 다양한 연구 분야는 일반적으로 입력 얼굴 영상에 대한 정규화가 필요하다. 사람의 얼굴은 표정, 조명 등에 따라 다양한 형태변화가 있어 입력 영상 마다 정확한 대표 특징 점을 찾는 것은 어려운 문제이다. 특히 감고 있는 눈이나 작은 눈 등은 검출하기 어렵기 때문에 얼굴 관련 연구에서 성능을 저하시키는 주요한 원인이 되고 있다. 이에 다양한 변화에 강건한 눈 검출을 위하여 본 논문에서는 눈의 텍스처 정보를 이용한 눈 검출 방법을 제안한다. 얼굴 영역에서 눈의 텍스처가 갖는 특성을 정의하고 두 가지 형태의 Eye 필터를 정의하였다. 제안된 방법은 Adaboost 기반의 얼굴 영역 검출 단계, 조명 정규화 단계, Eye 필터를 이용한 눈 후보 영역 검출 단계, 눈 위치 점 검출 단계 등 총 4단계로 구성된다. 실험 결과들은 제안된 방법이 얼굴의 자세, 표정, 조명 상태 등에 강건한 검출 결과를 보여주며 감은 눈 영상에서도 강건한 결과를 보여준다.

인간시각 인식특성을 지닌 효율적 비선형 스케치 특징추출 필터 (Effective Nonlinear Filters with Visual Perception Characteristics for Extracting Sketch Features)

  • 조성목;조옥래
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.139-145
    • /
    • 2006
  • 디지털 영상에서의 특징점 추출 기술은 로봇비전, 의료영상 진단시스템 및 비디오 전송과 같은 분야 등에서 많이 응용되고 있다. 디지털 영상에서 특징점을 추출하는 방법에는 비선형 그래디언트, 비선형 라프라시안, 엔트로피와 같은 필터들이 있다. 그런데 인간의 시각에서 영상의 특징이 형성되는 과정을 살펴보면, 밝은 영역보다는 어두운 영역에서의 특징에 더 민감한 특성을 가지고 있으므로 기존의 필터로써 특징점을 추출하는데 효과적이지 못하다. 본 논문에서는 국부영역의 밝기를 고려하는 특징점 추출 필터들을 제안한다. 이들 필터들은 연산이 간단하여 매우 신속하게 특징점을 추출할 수 있으며, 국부적인 밝기를 고려하지만 기존의 엔트로피 연산자가 지닌 단점을 극복하여 어두운 영역에서의 미세한 밝기 변화에는 강건한 특성을 가지는 특성을 지닌다. 실험결과 다양한 밝기변화와 국부영역에 걸쳐 매우 뛰어난 특징점 추출결과를 나타내었다.

  • PDF

불완전한 궤적을 고려한 강건한 특징점 추적 알고리즘 (A Robust Algorithm for Tracking Feature Points with Incomplete Trajectories)

  • 정종면;문영식
    • 대한전자공학회논문지SP
    • /
    • 제37권6호
    • /
    • pp.25-37
    • /
    • 2000
  • 특징점의 궤적은 인접한 프레임에 존재하는 특정점 사이의 대응관계로 정의할 수 있다. 실제 영상열에서 존재할 수 있는 잘못된 특징점(false positive, false negative)들은 특징점의 대응관계를 결정할 때 많은 문제를 야기하기 때문에 특징점의 대응관계를 찾는 문제는 어려운 문제로 알려져 있다. 본 논문에서는 새로운 궤적의 나타남, 사라짐 등 불완전한 궤적을 갖는 특징점들을 고려하는 특징점 추적기법을 제안한다. 정합 척도로서 가중치가 부여된 유클리디언 거리를 사용하고 특징점의 운동특성을 잘 반영할 수 있도록 그 가중치를 자동으로 조정한다. 대응점 탐색과정에서 치명적인 영향을 줄 수 있는 애매한 특징점이 존재하는 경우를 고려하여 인접한 프레임 사이의 정합점 결정을 그래프에 의한 최적 대응점 탐색문제로 해결한다. 제안하는 대응점 탐색 알고리즘은 실제 영상열에서 나타날 수 있는 잘못된 특징점들이 대응관계를 결정할 때 주는 영향을 최소화하기 위하여 국부 최적(local optimal)을 찾게되며, 인접한 두 프레임에 m, n개의 특징점이 주어졌을 경우, 최선의 경우 O(mn), 최악의 경우 O($m^2n$)의 계산량을 필요로 한다. 제안하는 알고리즘은 정합과정에서 잘못된 특징점을 고려하고, 특징점의 운동특성을 잘 반영함으로써 대량의 특징점을 추적하는데도 충분히 적용할 수 있음을 실험을 통해 확인하였다.

  • PDF

다차원특징벡터 정합을 위한 효율적인 정합 창틀 구현에 관한 연구 (A study on Efficient Matching Window Implementation for Multidimensional Feature Vector Matching)

  • 예철수;문창기;전종현
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.182-185
    • /
    • 2005
  • 스테레오 영상에서 동일점을 찾는 과정은 스테레오 비전 시스템의 전체 성능에 가장 중요한 영향을 미치는 요소이다. 특히 동일점을 찾기 위해 두 화소의 유사도를 측정하는 많은 방법들이 있으나 기존의 대부분의 연구에서는 주로 화소의 밝기값이나 화소의 그레디어트 크기 등과 같이 한 두 가지의 특징값에 기초하여 유사도를 측정한다. 본 연구에서는 다수의 특징 요소를 이용하여 정합하는 다차원특징벡터 정합의 성능을 향상시키는 효과적인 정합 창틀 구현 방법을 제안한다. 깊이 불연속이 존재하는 항공영상을 실험에 사용하였으며 깊이 불연속에 강건한 정합 성능을 보임을 실험 결과를 통해 확인할 수 있었다.

  • PDF

RGB-D 영상을 이용한 강건한 실시간 시각 주행 거리 측정 (Robust Real-Time Visual Odometry Estimation from RGB-D Images)

  • 김주희;김혜숙;김동하;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.825-828
    • /
    • 2014
  • 본 논문에서는 3차원 공간에서 6자유도로 움직이는 카메라의 실시간 포즈를 추적하기 위해, RGB-D 입력 영상들로부터 카메라의 실시간 주행 거리를 효과적으로 계산할 수 있는 시각 주행 거리 측정기를 제안한다. 본 논문에서 제안하는 시각 주행 거리 측정기에서는 컬러 영상과 깊이 영상의 풍부한 정보를 충분히 활용하면서도 실시간 계산량을 줄이기 위해, 특징점 위주의 저밀도 주행 거리 계산 방법을 사용한다. 또한, 본 시스템에서는 정확도 향상을 위해, 정합된 특징점들에 대한 추가적인 정상 집합정제 과정과 이들을 이용한 주행 거리 정제 작업을 반복하도록 설계하였다. TUM 대학의 벤치마크 데이터 집합을 이용하여 다양한 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제안하는 시각 주행 거리 측정기의 높은 성능을 확인할 수 있었다.

기준 평면의 설정에 의한 확장 칼만 필터 SLAM 기반 카메라 추적 방법 (EKF SLAM-based Camera Tracking Method by Establishing the Reference Planes)

  • 남보담;홍현기
    • 한국게임학회 논문지
    • /
    • 제12권3호
    • /
    • pp.87-96
    • /
    • 2012
  • 본 논문에서는 시퀀스 상에서 확장 칼만필터(Extended Kalman Filter) 기반의 SLAM(Simultaneous Localization And Mapping) 시스템의 안정적인 카메라 추적과 재위치(re-localization) 방법이 제안된다. SLAM으로 얻어진 3차원 특징점에 들로네(Delaunay) 삼각화를 적용하여 기준(reference) 평면을 설정하며, 평면상에 존재하는 특징점의 BRISK(Binary Robust Invariant Scalable Keypoints) 기술자(descriptor)를 생성한다. 기존 확장 칼만필터의 오차가 누적되는 경우를 판단하여 기준 평면의 호모그래피로부터 카메라 정보를 해석한다. 또한 카메라가 급격하게 이동해서 특징점 추적이 실패하면, 저장된 강건한 기술자 정보를 매칭하여 카메라의 위치를 다시 추정한다.

계층적 트리 구조를 이용한 카드 인식 시스템 (Card Recognition Using Hierarchical Tree Structure)

  • 심은지;전문구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.489-491
    • /
    • 2012
  • 본 논문은 교육용 서비스로 이용 가능한 카드 인식 시스템을 제안한다. 사용자는 자유자재로 카드 등록 및 삭제가 가능하며 카드의 회전 및 크기 변화에도 강건한 인식을 보인다. 본 논문에서는 카드 템플릿의 형태 정보와 Histogram of Oriented Gradients를 특징점으로 이용한다. 또한 최종 분류기에서 계층적인 구조를 적용하여 보다 정확한 카드 검출 및 인식을 제안한다.

2차원 웨이브릿 변환을 이용한 강건한 특징점 추출 및 추적 알고리즘 (Robust Feature Extraction and Tracking Algorithm Using 2-dimensional Wavelet Transform)

  • 장성군;석정엽
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.405-406
    • /
    • 2007
  • In this paper, we propose feature extraction and tracking algorithm using multi resolution in 2-dimensional wavelet domain. Feature extraction selects feature points using 2-level wavelet transform in interested region. Feature tracking estimates displacement between current frame and next frame based on feature point which is selected feature extraction algorithm. Experimental results show that the proposed algorithm confirmed a better performance than the existing other algorithms.

  • PDF