사람의 얼굴은 표정, 조명 등에 따라 다양한 형태 변화가 있어 입력 영상마다 대표 특징을 정확히 찾는 것은 어려운 문제이다. 얼굴의 많은 특징 점 중에서 눈동자 부분은 얼굴 인식 등 다양한 부분에 있어서 얼굴 영역의 특징 점으로 가장 많이 이용되는 특징 점들 중 하나이다. 본 논문에서는 다양한 조명하에서의 단일 얼굴 영상에 대해 유전자 알고리즘과 템플릿 정합을 이용하여 빠르게 눈을 검출하는 방법을 제안한다. 조명과 배경에 강건한 검출 성능을 얻기 위해 눈동자 후보점을 찾아서 초기 개체군 생성에 이용하였으며, 각각의 개체는 템플릿의 기하학적 변환 정보로 구성되어 템플릿 정합에 의해 눈동자가 검출된다.
본 논문에서는 얼굴 영역을 자동으로 검출하여 실시간으로 얼굴의 특징 짐을 추적하는 방법을 제안한다. Haar-like feature를 이용하여 얼굴 영역을 자동으로 추출하였으며, 회전에 강건한 KLT 알고리즘을 적용하여 얼굴의 특징 점들을 추출하였다. 그리고 실시간으로 얼굴의 특징점을 추적하기 위해 Lucas-Kanade 특징 추적 알고리즘을 사용하였다. 실험결과를 통하여 회전과 움직임에 강건하게 얼굴 영역을 검출하고 추적되는 것을 확인하였다.
자동 얼굴 인식, 표정 인식과 같은 얼굴 영상과 관련된 다양한 연구 분야는 일반적으로 입력 얼굴 영상에 대한 정규화가 필요하다. 사람의 얼굴은 표정, 조명 등에 따라 다양한 형태변화가 있어 입력 영상 마다 정확한 대표 특징 점을 찾는 것은 어려운 문제이다. 특히 감고 있는 눈이나 작은 눈 등은 검출하기 어렵기 때문에 얼굴 관련 연구에서 성능을 저하시키는 주요한 원인이 되고 있다. 이에 다양한 변화에 강건한 눈 검출을 위하여 본 논문에서는 눈의 텍스처 정보를 이용한 눈 검출 방법을 제안한다. 얼굴 영역에서 눈의 텍스처가 갖는 특성을 정의하고 두 가지 형태의 Eye 필터를 정의하였다. 제안된 방법은 Adaboost 기반의 얼굴 영역 검출 단계, 조명 정규화 단계, Eye 필터를 이용한 눈 후보 영역 검출 단계, 눈 위치 점 검출 단계 등 총 4단계로 구성된다. 실험 결과들은 제안된 방법이 얼굴의 자세, 표정, 조명 상태 등에 강건한 검출 결과를 보여주며 감은 눈 영상에서도 강건한 결과를 보여준다.
디지털 영상에서의 특징점 추출 기술은 로봇비전, 의료영상 진단시스템 및 비디오 전송과 같은 분야 등에서 많이 응용되고 있다. 디지털 영상에서 특징점을 추출하는 방법에는 비선형 그래디언트, 비선형 라프라시안, 엔트로피와 같은 필터들이 있다. 그런데 인간의 시각에서 영상의 특징이 형성되는 과정을 살펴보면, 밝은 영역보다는 어두운 영역에서의 특징에 더 민감한 특성을 가지고 있으므로 기존의 필터로써 특징점을 추출하는데 효과적이지 못하다. 본 논문에서는 국부영역의 밝기를 고려하는 특징점 추출 필터들을 제안한다. 이들 필터들은 연산이 간단하여 매우 신속하게 특징점을 추출할 수 있으며, 국부적인 밝기를 고려하지만 기존의 엔트로피 연산자가 지닌 단점을 극복하여 어두운 영역에서의 미세한 밝기 변화에는 강건한 특성을 가지는 특성을 지닌다. 실험결과 다양한 밝기변화와 국부영역에 걸쳐 매우 뛰어난 특징점 추출결과를 나타내었다.
특징점의 궤적은 인접한 프레임에 존재하는 특정점 사이의 대응관계로 정의할 수 있다. 실제 영상열에서 존재할 수 있는 잘못된 특징점(false positive, false negative)들은 특징점의 대응관계를 결정할 때 많은 문제를 야기하기 때문에 특징점의 대응관계를 찾는 문제는 어려운 문제로 알려져 있다. 본 논문에서는 새로운 궤적의 나타남, 사라짐 등 불완전한 궤적을 갖는 특징점들을 고려하는 특징점 추적기법을 제안한다. 정합 척도로서 가중치가 부여된 유클리디언 거리를 사용하고 특징점의 운동특성을 잘 반영할 수 있도록 그 가중치를 자동으로 조정한다. 대응점 탐색과정에서 치명적인 영향을 줄 수 있는 애매한 특징점이 존재하는 경우를 고려하여 인접한 프레임 사이의 정합점 결정을 그래프에 의한 최적 대응점 탐색문제로 해결한다. 제안하는 대응점 탐색 알고리즘은 실제 영상열에서 나타날 수 있는 잘못된 특징점들이 대응관계를 결정할 때 주는 영향을 최소화하기 위하여 국부 최적(local optimal)을 찾게되며, 인접한 두 프레임에 m, n개의 특징점이 주어졌을 경우, 최선의 경우 O(mn), 최악의 경우 O($m^2n$)의 계산량을 필요로 한다. 제안하는 알고리즘은 정합과정에서 잘못된 특징점을 고려하고, 특징점의 운동특성을 잘 반영함으로써 대량의 특징점을 추적하는데도 충분히 적용할 수 있음을 실험을 통해 확인하였다.
스테레오 영상에서 동일점을 찾는 과정은 스테레오 비전 시스템의 전체 성능에 가장 중요한 영향을 미치는 요소이다. 특히 동일점을 찾기 위해 두 화소의 유사도를 측정하는 많은 방법들이 있으나 기존의 대부분의 연구에서는 주로 화소의 밝기값이나 화소의 그레디어트 크기 등과 같이 한 두 가지의 특징값에 기초하여 유사도를 측정한다. 본 연구에서는 다수의 특징 요소를 이용하여 정합하는 다차원특징벡터 정합의 성능을 향상시키는 효과적인 정합 창틀 구현 방법을 제안한다. 깊이 불연속이 존재하는 항공영상을 실험에 사용하였으며 깊이 불연속에 강건한 정합 성능을 보임을 실험 결과를 통해 확인할 수 있었다.
본 논문에서는 3차원 공간에서 6자유도로 움직이는 카메라의 실시간 포즈를 추적하기 위해, RGB-D 입력 영상들로부터 카메라의 실시간 주행 거리를 효과적으로 계산할 수 있는 시각 주행 거리 측정기를 제안한다. 본 논문에서 제안하는 시각 주행 거리 측정기에서는 컬러 영상과 깊이 영상의 풍부한 정보를 충분히 활용하면서도 실시간 계산량을 줄이기 위해, 특징점 위주의 저밀도 주행 거리 계산 방법을 사용한다. 또한, 본 시스템에서는 정확도 향상을 위해, 정합된 특징점들에 대한 추가적인 정상 집합정제 과정과 이들을 이용한 주행 거리 정제 작업을 반복하도록 설계하였다. TUM 대학의 벤치마크 데이터 집합을 이용하여 다양한 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제안하는 시각 주행 거리 측정기의 높은 성능을 확인할 수 있었다.
본 논문에서는 시퀀스 상에서 확장 칼만필터(Extended Kalman Filter) 기반의 SLAM(Simultaneous Localization And Mapping) 시스템의 안정적인 카메라 추적과 재위치(re-localization) 방법이 제안된다. SLAM으로 얻어진 3차원 특징점에 들로네(Delaunay) 삼각화를 적용하여 기준(reference) 평면을 설정하며, 평면상에 존재하는 특징점의 BRISK(Binary Robust Invariant Scalable Keypoints) 기술자(descriptor)를 생성한다. 기존 확장 칼만필터의 오차가 누적되는 경우를 판단하여 기준 평면의 호모그래피로부터 카메라 정보를 해석한다. 또한 카메라가 급격하게 이동해서 특징점 추적이 실패하면, 저장된 강건한 기술자 정보를 매칭하여 카메라의 위치를 다시 추정한다.
본 논문은 교육용 서비스로 이용 가능한 카드 인식 시스템을 제안한다. 사용자는 자유자재로 카드 등록 및 삭제가 가능하며 카드의 회전 및 크기 변화에도 강건한 인식을 보인다. 본 논문에서는 카드 템플릿의 형태 정보와 Histogram of Oriented Gradients를 특징점으로 이용한다. 또한 최종 분류기에서 계층적인 구조를 적용하여 보다 정확한 카드 검출 및 인식을 제안한다.
In this paper, we propose feature extraction and tracking algorithm using multi resolution in 2-dimensional wavelet domain. Feature extraction selects feature points using 2-level wavelet transform in interested region. Feature tracking estimates displacement between current frame and next frame based on feature point which is selected feature extraction algorithm. Experimental results show that the proposed algorithm confirmed a better performance than the existing other algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.