• Title/Summary/Keyword: 강건제어

Search Result 211, Processing Time 0.037 seconds

A Robust Controller Design for the Position Control of a Spring-Mass System (탄성-질량시스템의 위치제어를 위한 강건 제어기 설계)

  • 박종우;이상철
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.41-49
    • /
    • 1999
  • In this paper, we design a controller using the $\mu$-synthesis method and apply it for the spring-mass system with noncollocated sensors and actuators. We assume that the values of the spring stiffness and load mass of the plant are uncertain. The plant is modeled with parametric uncertainty by using the state space equation, especially the descriptor form. The $H_\infty$ controller designed by the $\mu$-synthesis method is compared with the standard $H_\infty$ controller To compare performances of two $H_\infty$ controllers, it is assumed that both controllers were designed with same weighting functions except that the $\mu$-synthesis controller has structured uncertainties. By compared with the standard $H_\infty$ controller, we show that the designed controller has satisfactory robust performance as well as robust stability by simulations and experiments.

  • PDF

Global Optimization을 이용한 Structured Singular Value의 계산

  • 이지태
    • ICROS
    • /
    • v.10 no.3
    • /
    • pp.21-26
    • /
    • 2004
  • Structured singular value (SSV)는 robust stability와 robust performance를 매우 엄밀하게 다루기 위해 고안되었다 (Doyle, 1982; Safonov, 1982). 이 엄밀성으로 제어시스템의 설계 및 분석에 광범위하게 사용되고 있다. 강건제어의 단초를 이루었으며 loop failure tolerance, decentralized integral controllability (Campo and Morari. 1994), D-stability (Lee and Edgar, 2001) 등에 SSY가 사용되고 있다. SSV의 중요성이 알려짐에 따라 이것에 관한 많은 연구가 있었다(Fan et at., 1991 ; Pacltard and Pander, 1993), 그러나 이 값의 계산은 매우 어려운 NP-hard인 것으로 판명되었으며 (Braatz et al.. 1994). 실수 불확실 변수에 대한 SSV의 경우 원하는 오차범위 내로 근사 값을 구하는 것도 마찬가지 인 것으로 밝혀졌다(Fu, 1997).(중략)

Robust Tracking Control of Smart Flexible Structures Featuring Piezofilm Actuators (압전필름 작동기로 구성된 스마트 유연 구조물의 강건추적제어)

  • Lee, Chul-Hee;Choei-Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1498-1507
    • /
    • 1996
  • This paper presents a robust control of a smart flexible structure featured by a piezofilm actuator characterizing its light weght and quick response time. A mathematical governing equation for the proposed structure is derived by employing Hamilton's principle and a state space control model is subsequentrly obtained through modal analysis. Uncertain system parameters such as frequency variation are included in the control model. A sliding mode control theroy thich has inherent robustness to systme uncertainties is adopted to design a tracking controller for the peizofilm actuator. Using the output informaiton from the tip deflection sensor, a full-order observer is constructed ot estimate state variables for the system. Tracking performances for desired trajectories of sinusoidal amd step functions are evaluated by undertaking both simulation and experimental works.

Improving the Roll Stability of a Vehicle by H$_{\infty}$ Control (선회 조향시 강건 제어에 의한 롤 안정성 개선)

  • 김효준;양현석;박영필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.92-99
    • /
    • 2001
  • This paper presents a simulation study using a robust controller to improve the roll stability of a vehicle. The controller is designed in the framework of an output feedback H$_{\infty}$ control scheme based on the 3DOF linear vehicle model, solving the mixed-sensitivity problem to guarantee the robust stability and disturbance rejection with respect to parameter variations due to laden and running vehicle conditions. In order to investigate the feasibility of the active roll control system in a real car, its performance is evaluated by simulation in a 10DOF full vehicle model with actuator dynamics and tire characteristics.

  • PDF

Optimal Control and Robust Control of Rotating Shaft Using Magnetic Bearings (자기베어링을 이용한 회전축의 최적제어 및 강건제어)

  • Kang, Ho-Shik;Jeong, Namheul;Yoon, Il-Soung;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1330-1337
    • /
    • 2004
  • In this study, the equations of motion of a rigid rotor supported by magnetic bearings are derived via Hamilton's principle, and transformed to a state-space form for control purpose. The optimal motion control of rotor magnetic bearing system based on the LQR(linear quadratic regulator) theory is addressed. New schemes related to the selection of the state weighting matrix Q and the control weighting matrix R involved in the quadratic functional to be minimized are proposed. And the robust control of the system with an LMI(linear matrix inequality) based H$_{\infty}$ theory is dealt with in this paper. Loop shapings of TFM (transfer function matrix) are used to increase the performance of control capability of the system. The control abilities of LQR and H$_{\infty}$ controller are compared by simulation and experimental tests and show that the capability of H$_{\infty}$ controller is superior to that of LQR.

Robust Wireless Sensor and Actuator Network for Critical Control System (크리티컬한 제어 시스템용 고강건 무선 센서 액추에이터 네트워크)

  • Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1477-1483
    • /
    • 2020
  • The stability guarantee of wireless network based control systems is still challenging due to the lossy links and node failures. This paper proposes a hierarchical cluster-based network protocol called robust wireless sensor and actuator network (R-WSAN) by combining time, channel, and space resource diversity. R-WSAN includes a scheduling algorithm to support the network resource allocation and a control task sharing scheme to maintain the control stability of multiple plants. R-WSAN was implemented on a real test-bed using Zolertia RE-Mote embedded hardware platform running the Contiki-NG operating system. Our experimental results demonstrate that R-WSAN provides highly reliable and robust performance against lossy links and node failures. Furthermore, the proposed scheduling algorithm and the task sharing scheme meet the stability requirement of control systems, even if the controller fails to support the control task.

Design of the $H_{\infty}$Controller for a Planner Robot System (2차원 평면운동 로봇 시스템에 대한 $H_{\infty}$ 제어기 설계)

  • 조도현;이상철;이종용
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.96-104
    • /
    • 2000
  • In this paper, an $H_{\infty}$ robust controller has been designed for a large-scale system consisted of subsystems of mutually coupled plants. The physical plant, a two-dimensional horizontal movement robot system, has two subsystem plants mutually coupled by links. The designed $H_{\infty}$controller has been designed to get not only the robust stability for exogenous inputs to each plant but also the good tracking performance for the reference input to each plant. The $H_{\infty}$controller has shown the superior tracking performance and robust stability compared with the proportional-plus-derivative controller through computer simulations and physical experiments.

  • PDF

Identification and Robust Control of a Flexible Manipulator (유연한 매니플레이터의 시스템 동정과 강건제어)

  • 송세환;박창용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.227-277
    • /
    • 2000
  • This paper presents an application of Mixed-Sensitivity H$_{\infty}$ control of a flexible manipulator. Firstly the detail model transfer function is derived from system identification. The objective is to position the free end of the beam with model including uncertainties and disturbance. we derive multiplicative uncertainties based on frequency response from difference between detail model and reduced model for designing controller. Finally we compare simulation results with experimental results.

  • PDF

Robust Control of Variable Hydraulic System using Multiple Fuzzy Rules (다수의 퍼지규칙을 이용한 가변유압시스템의 강건제어)

  • 양경춘;안경관;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.134-134
    • /
    • 2000
  • A switching control using multiple gains in the fuzzy rule is newly proposed for an abruptly changing hydraulic servo system. The proposed scheme employs fuzzy PID control, where modified input parameters are used, and LVQNN(Learning Vector Quantization Neural Network) as a switching controller (supervisor). Simulation and experimental studies have been carried out to validate and illustrate the proposed controller.

  • PDF

Robust Control of Disturbed Magnetic Bearing Rotor Systems (외란을 받는 자기베어링 주축계의 강건제어)

  • 강호식;송오섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.40-46
    • /
    • 2004
  • Magnetic bearing has been adopted to support a rotor by electromagnetic force without mechanical contact and lubrication process. The recent growth of magnetic bearing applications in many industrial fields requires more accurate design of bearing-rotor system. Due to external forces and uncertainties of magnetic bearing system the actual performance and stability my be worse than it is designed. This paper describes the governing equations of rotor magnetic bearing systems and/or the designing of robust controller via standard $H_{\infty}$ control problem. The system stability and response characteristics are studied by simulations and verified with experimental results.