Proceedings of the Korean Information Science Society Conference
/
1998.10a
/
pp.21-23
/
1998
본 논문에서 ILP (Instruction Level Parallelism)의 성능향상을 위하여 데이터 값들을 미리 예측하여 병렬로 이슈(issue)하고 수행하는 기존의 데이터 값 예측기(data value predictor)를 비교 분석하여 각 예측기의 예측율을 측정하고, 2-단계 데이터 값 예측기(Two-Level Data Value Predictor)와 혼합형 데이터 값 예측기(Hydrid Data Value Predictor)에서 발생되는 aiasing 을 측정하기 위해 수정된 데이터 값 예측기를 사용하여 측정한 결과 aliasing은 50% 감소하였지만 예측율에는 영향을 미치지 못함과 데이터 값 예측기의 예측율을 측정한 결과 혼합형 데이터 값 예측기의 예측율이 2-단계 데이터 값 예측기와 스트라이드 데이터 값 예측기(Stride Data Value Predictor)에서 평균 5.7%, 최근 값 예측기(Last Data Value Predictor)보다는 평균 38%의 예측 정확도가 높음을 입증하였다.
Value prediction is a technique to obtain performance gains by supplying earlier source values of its data dependent instructions using predicted value of a instruction. To fully exploit the potential of value speculation, however, the efficient recovery mechanism is necessary in case of value misprediction. In this paper, we propose a sequential and selective recovery mechanism for value misprediction. It searches data dependency chain of the mispredicted instruction sequentially without pipeline stalls and adverse impact on clock cycle time. In our scheme, only the dependent instructions on the predicted instruction is selectively squashed and reissued in case of value misprediction.
Proceedings of the Korean Information Science Society Conference
/
2001.10c
/
pp.10-12
/
2001
와이드 이슈 슈퍼스칼라 프로세서에서 값 예측기는 한 명령어의 결과를 미리 예측하여 명령들 간의 데이터 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성(Instruction Level Parallesim ILP)을 향상시키는 기법이다. 본 논문에서는 명령어 수준 병렬성을 이용하여 성능을 향상시키기 위하여 데이터 값을 미리 예측하여 병렬로 이슈하고 수행하는 값 예측기의 성능을 비교분석 한다. 먼저 값 예측기 종류별로 성능을 측정한다 그리고 테이블의 갱신시점, 트레이스 캐시 유무 및 명령윈도우 크기에 따른 값 예측기의 성능영향을 평가분석 한다. 성능분석 결과 최근 값 예측기가 간소한 하드웨어 구성에도 불구하고 우수한 성능을 보였다. 그리고 예측테이블 갱신시점과 트레이스캐시의 사용이 값 예측기의 성능향상에 영향을 주었다.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.685-687
/
2002
고성능 슈퍼스칼라 프로세서에서 값 예측 실패 시에 잘못 예측된 값을 사용하여 모험적으로 수행된 명령들만을 순차적으로 취소하고 복구한 후에 재이슈하는 값 예측 실패 복구 메커니즘을 제안한다. 제안된 복구 방식은 값 예측이 틀린 종속명령만을 선택적으로 재이슈하여 불필요한 재이슈를 줄임으로써 값 예측 실패 시에 손실을 줄인다. 또한 기존의 방식들처럼 잘못 예측된 명령에 종속적인 명령들의 한번에 병렬로 검색하지 않고 명령들의 종속체인을 따라 순차적으로 검색함으로써 프로세서의 클럭 사이클에 영향을 미치지 않으면서 하드웨어의 구현의 복잡성을 줄인다.
Proceedings of the Acoustical Society of Korea Conference
/
1991.06a
/
pp.113-116
/
1991
본 논문에서는 고속 도로 주변에서 교통 소음 대책으로 사용되는 방음벽 효과에 대해 교통 소음 모델에 의한 예측값과 실측값을 비교하였다. 도로 교통 소음로서는 일본 음향 학회 모델, 국립 환경원 모델, 조한인 모델을 대상으로 하였다. 세가지 모델의 예측값과 실측값의 비교 결과, 갓길(노견)에서는 일본 음향 학회 모델과 국립 환경원 모델에 의한 예측값이 실측값과 $\pm$3.5dB(A) 차이로 비슷한 결과를 보였으며, 소음 측정 지점이 음원과 먼 경우는 속도가 빠를수록 일본 음향 학회 모델은 예측값과 실측값의 차이가 커졌다. 조한인 모델은 시가지 도로에서는 잘 맞지만 고속 도로에 적용하기에는 적합하지 않았다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2008.11a
/
pp.131-134
/
2008
H.264/AVC 부호화 표준은 움직임 벡터를 부호화하기 위해 인접 블록이 가지는 다수의 움직임 벡터 중에서 확률적으로 해당 움직임 벡터와 가장 유사한 중간값을 예측 움직임 벡터로 사용한다. 이러한 방법은 다수의 움직임 벡터 중에서 어떤 움직임 벡터가 예측값으로 사용되었는지에 대한 추가 정보 없이 비트량을 효과적으로 감소시킬 수 있는 장점이 있으나, 중간값을 이용한 예측 움직임 벡터는 해당 움직임 벡터를 부호화하는데 소요되는 비트량을 항상 최소로 만드는 최적 예측값이 아니라는 단점이 있다. 이러한 문제를 해결하기 위해 다수의 인접 블록이 가지는 움직임 벡터 중에서 특정 움직임 벡터가 예측값으로 사용되었는지 표현하는 정보를 복호화기에 알려주도록 하여 항상 최적의 예측 움직임 벡터를 선택함으로써 부호화 효율을 향상시킬 수 있으나, 이에 대한 추가 정보를 부호화해야 하는 문제점이 발생하게 된다. 본 논문에서는 부호화기가 부호화 효율 측면에서 가장 우수한 움직임 벡터를 예측값으로 선택하고, 이를 복호화기가 스스로 예측함으로써 인접 블록이 가지는 다수의 움직임 벡터 중에서 특정 움직임 벡터가 예측값으로 사용되었는지에 대한 정보없이 움직임 벡터 부호화에 소요되는 비트량을 효과적으로 감소시키는 움직임 벡터 부호화 방법을 제안한다. 제안한 부호화기는 율-왜곡 측면에서 가장 우수한 예측 움직임 벡터를 선택하고, 복호화기는 부호화기가 선택한 예측 움직임 벡터를 정합 기술을 사용하여 스스로 예측한다. 실험 결과는 제안 방법이 QCIF 및 CIF 영상에서 약 2.2%의 전체 비트량을 감소시킬 수 있음을 보여준다.
Proceedings of the Korean Society of Computer Information Conference
/
2012.01a
/
pp.263-264
/
2012
본 논문은 여러 개의 독립적인 시계열로 구성된 시계열 패널 자료를 이용하여 비선형 모형인 GRCA모형과 신경망을 이용하여 예측값을 구하여 서로 비교 분석하고자 한다. 먼저 GRCA모형에 대하여 연구하고 신경망의 구조와 예측값을 구하기 위한 여러 가지 변환함수를 유도한다. 단기 예측에서는 신경망 방법의 예측값이 더 좋았고, 장기예측에서는 비선형모형을 이용한 예측값이 더 좋은 것으로 나타났다.
In superscalar processors, value prediction is a technique that breaks true data dependences by predicting the outcome of an instruction in order to exploit instruction level parallelism(ILP). A value predictor looks up the prediction table for the prediction value of an instruction in the instruction fetch stage, and updates with the prediction result and the resolved value after the execution of the instruction for the next prediction. However, as the instruction fetch and issue rates are increased, the same instruction is likely to fetch again before is has been updated in the predictor. Hence, the predictor looks up the stale value in the table and this mostly will cause incorrect value predictions. In this paper, a stride value predictor with the capability of speculative updates, which can update the prediction table speculatively without waiting until the instruction has been completed, is proposed. Also, the performance of the scheme is examined using Simplescalar simulator for SPECint95 benchmarks in which our value predictor is added.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.688-690
/
2002
고성능 슈퍼스칼라 프로세서에서는 명령어 수준 병렬성(Instruction Level Parallelism, ILP)의 장애인 명령어간의 종속 관계 중 데이터 종속관계를 극복하기 위해 값 예측기를 이용하여 모험적으로 명령어들을 실행한다. 값 예측 시에 필요한 테이블 참조와 값 예측 실패 시 실행되는 잘못된 명령어의 실행은 프로세서의 부가적인 전력 소모를 요구한다. 본 논문에서는 값 예측기와 Cai-Lim의 전력모델을 슈퍼스칼라 프로세서 사이클 수준 시뮬레이터인 SimpleScalar 3.0 툴셋에 삽입하여 전력 소모량을 측정하고 분석한다.
KIPS Transactions on Software and Data Engineering
/
v.6
no.9
/
pp.437-444
/
2017
Although many studies tried to predict movie revenues in the last decade, the main focus is still to learn an efficient forecast model to fit the box-office revenues. However, the previous works lack the analysis about why the prediction errors occur, and no method is proposed to reduce the errors. In this paper, we consider the prediction error comes from the competition between the movies that are released in the same period. Our purpose is to analyze the competition value for a movie and to predict how much it will be affected by other competitors so as to improve the performance of movie box-office prediction. In order to predict the competition value, firstly, we classify its sign (positive/negative) and compute the probability of positive sign and the probability of negative sign. Secondly, we forecast the competition value by regression under the condition that its sign is positive and negative respectively. And finally, we calculate the expectation of competition value based on the probabilities and values. With the predicted competition, we can adjust the primal predicted box-office. Our experimental results show that predictive competition can help improve the performance of the forecast.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.