• Title/Summary/Keyword: 값 예측

Search Result 5,554, Processing Time 0.045 seconds

The Performance evaluation of Data Value Predictor in ILP Processor (ILP 프로세서에서 데이터 값 예측기의 성능 평가)

  • 박희룡;전병찬;이상정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.21-23
    • /
    • 1998
  • 본 논문에서 ILP (Instruction Level Parallelism)의 성능향상을 위하여 데이터 값들을 미리 예측하여 병렬로 이슈(issue)하고 수행하는 기존의 데이터 값 예측기(data value predictor)를 비교 분석하여 각 예측기의 예측율을 측정하고, 2-단계 데이터 값 예측기(Two-Level Data Value Predictor)와 혼합형 데이터 값 예측기(Hydrid Data Value Predictor)에서 발생되는 aiasing 을 측정하기 위해 수정된 데이터 값 예측기를 사용하여 측정한 결과 aliasing은 50% 감소하였지만 예측율에는 영향을 미치지 못함과 데이터 값 예측기의 예측율을 측정한 결과 혼합형 데이터 값 예측기의 예측율이 2-단계 데이터 값 예측기와 스트라이드 데이터 값 예측기(Stride Data Value Predictor)에서 평균 5.7%, 최근 값 예측기(Last Data Value Predictor)보다는 평균 38%의 예측 정확도가 높음을 입증하였다.

  • PDF

Sequential and Selective Recovery Mechanism for Value Misprediction (값 예측 오류를 위한 순차적이고 선택적인 복구 방식)

  • 이상정;전병찬
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.67-77
    • /
    • 2004
  • Value prediction is a technique to obtain performance gains by supplying earlier source values of its data dependent instructions using predicted value of a instruction. To fully exploit the potential of value speculation, however, the efficient recovery mechanism is necessary in case of value misprediction. In this paper, we propose a sequential and selective recovery mechanism for value misprediction. It searches data dependency chain of the mispredicted instruction sequentially without pipeline stalls and adverse impact on clock cycle time. In our scheme, only the dependent instructions on the predicted instruction is selectively squashed and reissued in case of value misprediction.

A Performance Evaluation of Value Predictors in a Superscalar Processor (슈퍼스칼라 프로세서에서 값 예측기의 성능평가)

  • 전병찬;박희룡;이상정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.10-12
    • /
    • 2001
  • 와이드 이슈 슈퍼스칼라 프로세서에서 값 예측기는 한 명령어의 결과를 미리 예측하여 명령들 간의 데이터 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성(Instruction Level Parallesim ILP)을 향상시키는 기법이다. 본 논문에서는 명령어 수준 병렬성을 이용하여 성능을 향상시키기 위하여 데이터 값을 미리 예측하여 병렬로 이슈하고 수행하는 값 예측기의 성능을 비교분석 한다. 먼저 값 예측기 종류별로 성능을 측정한다 그리고 테이블의 갱신시점, 트레이스 캐시 유무 및 명령윈도우 크기에 따른 값 예측기의 성능영향을 평가분석 한다. 성능분석 결과 최근 값 예측기가 간소한 하드웨어 구성에도 불구하고 우수한 성능을 보였다. 그리고 예측테이블 갱신시점과 트레이스캐시의 사용이 값 예측기의 성능향상에 영향을 주었다.

  • PDF

Sequential Value Misprediction Recovery Mechanism in High Performance Microprocessors (고성능 마이크로프로세서에서 순차적 값 예측 실패 복구 방식)

  • 전병찬;박희룡;이상정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.685-687
    • /
    • 2002
  • 고성능 슈퍼스칼라 프로세서에서 값 예측 실패 시에 잘못 예측된 값을 사용하여 모험적으로 수행된 명령들만을 순차적으로 취소하고 복구한 후에 재이슈하는 값 예측 실패 복구 메커니즘을 제안한다. 제안된 복구 방식은 값 예측이 틀린 종속명령만을 선택적으로 재이슈하여 불필요한 재이슈를 줄임으로써 값 예측 실패 시에 손실을 줄인다. 또한 기존의 방식들처럼 잘못 예측된 명령에 종속적인 명령들의 한번에 병렬로 검색하지 않고 명령들의 종속체인을 따라 순차적으로 검색함으로써 프로세서의 클럭 사이클에 영향을 미치지 않으면서 하드웨어의 구현의 복잡성을 줄인다.

  • PDF

On Comparison of Theoretical Formulars for Estimation of Highway Noise Barriers Effect (고속도로에서 방음벽 효과 예측을 위한 이론식이 비교)

  • 박충상
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.113-116
    • /
    • 1991
  • 본 논문에서는 고속 도로 주변에서 교통 소음 대책으로 사용되는 방음벽 효과에 대해 교통 소음 모델에 의한 예측값과 실측값을 비교하였다. 도로 교통 소음로서는 일본 음향 학회 모델, 국립 환경원 모델, 조한인 모델을 대상으로 하였다. 세가지 모델의 예측값과 실측값의 비교 결과, 갓길(노견)에서는 일본 음향 학회 모델과 국립 환경원 모델에 의한 예측값이 실측값과 $\pm$3.5dB(A) 차이로 비슷한 결과를 보였으며, 소음 측정 지점이 음원과 먼 경우는 속도가 빠를수록 일본 음향 학회 모델은 예측값과 실측값의 차이가 커졌다. 조한인 모델은 시가지 도로에서는 잘 맞지만 고속 도로에 적용하기에는 적합하지 않았다.

  • PDF

Motion Vector Coding using Decoder-side Estimation (복호화기 측의 예측을 이용한 움직임 벡터 부호화)

  • Won, Kwang-Hyun;Yang, Jung-Youp;Jeon, Byeung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.131-134
    • /
    • 2008
  • H.264/AVC 부호화 표준은 움직임 벡터를 부호화하기 위해 인접 블록이 가지는 다수의 움직임 벡터 중에서 확률적으로 해당 움직임 벡터와 가장 유사한 중간값을 예측 움직임 벡터로 사용한다. 이러한 방법은 다수의 움직임 벡터 중에서 어떤 움직임 벡터가 예측값으로 사용되었는지에 대한 추가 정보 없이 비트량을 효과적으로 감소시킬 수 있는 장점이 있으나, 중간값을 이용한 예측 움직임 벡터는 해당 움직임 벡터를 부호화하는데 소요되는 비트량을 항상 최소로 만드는 최적 예측값이 아니라는 단점이 있다. 이러한 문제를 해결하기 위해 다수의 인접 블록이 가지는 움직임 벡터 중에서 특정 움직임 벡터가 예측값으로 사용되었는지 표현하는 정보를 복호화기에 알려주도록 하여 항상 최적의 예측 움직임 벡터를 선택함으로써 부호화 효율을 향상시킬 수 있으나, 이에 대한 추가 정보를 부호화해야 하는 문제점이 발생하게 된다. 본 논문에서는 부호화기가 부호화 효율 측면에서 가장 우수한 움직임 벡터를 예측값으로 선택하고, 이를 복호화기가 스스로 예측함으로써 인접 블록이 가지는 다수의 움직임 벡터 중에서 특정 움직임 벡터가 예측값으로 사용되었는지에 대한 정보없이 움직임 벡터 부호화에 소요되는 비트량을 효과적으로 감소시키는 움직임 벡터 부호화 방법을 제안한다. 제안한 부호화기는 율-왜곡 측면에서 가장 우수한 예측 움직임 벡터를 선택하고, 복호화기는 부호화기가 선택한 예측 움직임 벡터를 정합 기술을 사용하여 스스로 예측한다. 실험 결과는 제안 방법이 QCIF 및 CIF 영상에서 약 2.2%의 전체 비트량을 감소시킬 수 있음을 보여준다.

  • PDF

Prediction for Time Series Panel Data using Neural Network (신경망을 이용한 시계열 패널자료의 예측)

  • Kim, In-Kyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.263-264
    • /
    • 2012
  • 본 논문은 여러 개의 독립적인 시계열로 구성된 시계열 패널 자료를 이용하여 비선형 모형인 GRCA모형과 신경망을 이용하여 예측값을 구하여 서로 비교 분석하고자 한다. 먼저 GRCA모형에 대하여 연구하고 신경망의 구조와 예측값을 구하기 위한 여러 가지 변환함수를 유도한다. 단기 예측에서는 신경망 방법의 예측값이 더 좋았고, 장기예측에서는 비선형모형을 이용한 예측값이 더 좋은 것으로 나타났다.

  • PDF

Sepculative Updates of a Stride Value Predictor in Wide-Issue Processors (와이드 이슈 프로세서를 위한 스트라이드 값 예측기의 모험적 갱신)

  • Jeon, Byeong-Chan;Lee, Sang-Jeong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.11
    • /
    • pp.601-612
    • /
    • 2001
  • In superscalar processors, value prediction is a technique that breaks true data dependences by predicting the outcome of an instruction in order to exploit instruction level parallelism(ILP). A value predictor looks up the prediction table for the prediction value of an instruction in the instruction fetch stage, and updates with the prediction result and the resolved value after the execution of the instruction for the next prediction. However, as the instruction fetch and issue rates are increased, the same instruction is likely to fetch again before is has been updated in the predictor. Hence, the predictor looks up the stale value in the table and this mostly will cause incorrect value predictions. In this paper, a stride value predictor with the capability of speculative updates, which can update the prediction table speculatively without waiting until the instruction has been completed, is proposed. Also, the performance of the scheme is examined using Simplescalar simulator for SPECint95 benchmarks in which our value predictor is added.

  • PDF

An Analysis of Power Dissipation of Value Prediction in Superscalar Processors (슈퍼스칼라 프로세서에서의 값 예측의 전력 소모 측정 및 분석)

  • 이명근;이상정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.688-690
    • /
    • 2002
  • 고성능 슈퍼스칼라 프로세서에서는 명령어 수준 병렬성(Instruction Level Parallelism, ILP)의 장애인 명령어간의 종속 관계 중 데이터 종속관계를 극복하기 위해 값 예측기를 이용하여 모험적으로 명령어들을 실행한다. 값 예측 시에 필요한 테이블 참조와 값 예측 실패 시 실행되는 잘못된 명령어의 실행은 프로세서의 부가적인 전력 소모를 요구한다. 본 논문에서는 값 예측기와 Cai-Lim의 전력모델을 슈퍼스칼라 프로세서 사이클 수준 시뮬레이터인 SimpleScalar 3.0 툴셋에 삽입하여 전력 소모량을 측정하고 분석한다.

  • PDF

Competition Analysis to Improve the Performance of Movie Box-Office Prediction (영화 매출 예측 성능 향상을 위한 경쟁 분석)

  • He, Guijia;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.9
    • /
    • pp.437-444
    • /
    • 2017
  • Although many studies tried to predict movie revenues in the last decade, the main focus is still to learn an efficient forecast model to fit the box-office revenues. However, the previous works lack the analysis about why the prediction errors occur, and no method is proposed to reduce the errors. In this paper, we consider the prediction error comes from the competition between the movies that are released in the same period. Our purpose is to analyze the competition value for a movie and to predict how much it will be affected by other competitors so as to improve the performance of movie box-office prediction. In order to predict the competition value, firstly, we classify its sign (positive/negative) and compute the probability of positive sign and the probability of negative sign. Secondly, we forecast the competition value by regression under the condition that its sign is positive and negative respectively. And finally, we calculate the expectation of competition value based on the probabilities and values. With the predicted competition, we can adjust the primal predicted box-office. Our experimental results show that predictive competition can help improve the performance of the forecast.