• Title/Summary/Keyword: 감항인증

Search Result 97, Processing Time 0.029 seconds

A Study on Improvement in Quality System Evaluation for Production Approval of Aircraft and Parts (항공기 및 부품 생산승인을 위한 품질시스템 평가기준 개선 연구)

  • Kang-Yi Lee;Jae-Hoon Han;Jung-Sam Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.118-126
    • /
    • 2023
  • Most of the aerospace industries establish the SAE AS9100 Quality Management System, and acquire commercial certification by the 3rd party. Nevertheless, they repeatably have to cope with similar quality system evaluation by the airworthiness authority for the production certificate, parts manufacturer approval, and technical standard order authorization in accordance with the applicable regulations. The current quality system evaluation criteria of the airworthiness authority could be recommended for reforms in order to reduce duplication and correspond to the industrial development and environmental changes. In this paper, we propose measures to reform the authority's evaluation criteria through comparative analysis among the IAQG SAE AS9100, the FAA quality system codes, and the MOLIT ACSEP requirements.

A Study on Certification Methods due to Scope and Influence of Design Changes for the Aircraft (항공기 설계변경의 범위 및 영향성에 따른 안전성 인증방법에 관한 고찰)

  • Lee, Kang-Yi;Ko, Joon Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.566-573
    • /
    • 2017
  • A type certificate is required to ensure the safety of aircraft design. If a person is to pursue major design change to the certified aircraft, an applicant has to apply for a new type certificate, an amended type certificate, or a supplemental type certificate appropriately. Design changes to be applied for a supplemental type certificate are abstractly defined in ICAO, FAA, and EASA regulations. In this paper, authors reviewed certification procedures regarding design changes, analysed certification examples of leading countries, and presented the criteria to determine "major design changes not extensive" for a supplemental type certificate.

A Study on the Legislation for the Commercial and Civil Unmanned Aircraft System Operation (국내 상업용 민간 무인항공기 운용을 위한 법제화 고찰)

  • Kim, Jong-Bok
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.1
    • /
    • pp.3-54
    • /
    • 2013
  • Nowadays, major advanced countries in aviation technology are putting their effort to develop commercial and civil Unmanned Aircraft System(UAS) due to its highly promising market demand in the future. The market scale of commercial and civil UAS is expected to increase up to approximately 8.8 billon U.S. dollars by the year 2020. The usage of commercial and civil UAS covers various areas such as remote sensing, relaying communications, pollution monitoring, fire detection, aerial reconnaissance and photography, coastline monitoring, traffic monitoring and control, disaster control, search and rescue, etc. With the introduction of UAS, changes need to be made on current Air Traffic Management Systems which are focused mainly manned aircrafts to support the operation of UAS. Accordingly, the legislation for the UAS operation should be followed. Currently, ICAO's Unmanned Aircraft System Study Group(UASSG) is leading the standardization process of legislation for UAS operation internationally. However, some advanced countries such as United States, United Kingdom, Australia have adopted its own legislation. Among these countries, United States is most forth going with President Obama signing a bill to integrate UAS into U.S. national airspace by 2015. In case of Korea, legislation for the unmanned aircraft system is just in the beginning stage. There are no regulations regarding the operation of unmanned aircraft in Korea's domestic aviation law except some clauses regarding definition and permission of the unmanned aircraft flight. However, the unmanned aircrafts are currently being used in military and under development for commercial use. In addition, the Ministry of Land, Infrastructure and Transport has a ambitious plan to develop commercial and civil UAS as Korea's most competitive area in aircraft production and export. Thus, Korea is in need of the legislation for the UAS operation domestically. In this regards, I personally think that Korea's domestic legislation for UAS operation will be enacted focusing on following 12 areas : (1)use of airspace, (2)licenses of personnel, (3)certification of airworthiness, (4)definition, (5)classification, (6)equipments and documents, (7)communication, (8)rules of air, (9)training, (10)security, (11)insurance, (12)others. Im parallel with enacting domestic legislation, korea should contribute to the development of international standards for UAS operation by actively participating ICAO's UASSG.

  • PDF

A Study on the Development of Airworthiness Standards for VTOL UAS (수직이착륙(VTOL) 무인항공기 감항기준 개발에 대한 연구)

  • Gil, Ginam;Yoo, Minyoung;Park, Jongsung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.44-53
    • /
    • 2020
  • In conjunction with the Fourth Industrial Revolution, the unmanned aerial vehicle industry is being developed to a new paradigm by combining advanced technologies such as AI, Big Data and the IoT. Aeronautical developed countries such as the U.S. are focusing their efforts on the development of the safer unmanned aerial vehicles. The Korea Aerospace Research Institute, as part of the national R&D project in 2011, had succeeded in developing the first vertical takeoff and landing (VTOL) UAS, called Smart-UAV. However, although the development technology of the VTOL UAS is possessed, developing and operating of the VTOL UAS for commercial or military use are limited. The type certification procedure of the VTOL UAS developed by domestic technology is stipulated in the Korean Aviation Safety Act, but the Korean VTOL UAS airworthiness standards (KAS) hsve not been established. Thus, this study investigated the development trends of the VTOL UAS in Korea and abroad and national certification systems and procedures, and benchmarked the special conditions for the VTOL aircraft, announced by the EASA on July 2, 2019, to establish standards for type certificate of the VTOL UAS in Korea.

Comparative Study of Engine Type Certification Criteria (항공기 엔진 민수 인증 기준의 비교 분석 연구)

  • Kim, Jae-Hwan;Jung, Yong Wun;Moon, Gyeong Chan;Park, Sooyoul;Kim, Myeonghyo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.201-204
    • /
    • 2017
  • An comparative analysis between two engine type certification specifications which are FAR Part 33 and EASA CS-E has been performed to provide fundamental information for validity assessment of civil certified engine when it is installed to a military rotorcraft. The analysis result has been used to build a traceability information between CS-E and MIL-HDBK-516C by which the substantiation data for engine type certification can be used as parts of aircraft propulsion system airworthiness substantiation.

  • PDF

A Study on improvement of Korean aircraft system modification certification procedure (우리나라 항공기 시스템 개조 인증 절차 개선 연구)

  • Yoo, Beong-Seon;Lim, In-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.185-193
    • /
    • 2021
  • The system needs to be modified to improve the performance of the aircraft in operation or to satisfy the requirements of related laws. Appropriate standards are required for the technical skills for remodeling the aircraft system, design verification for airworthiness of the aircraft, and supplemental type certification (STC) certification procedures for type certification. This study analyzes the current status and demand of domestic aircraft remodeling, examines the current supplementary type certification procedure, and diagnoses the problem. In addition, as a result of researching measures to improve remodeling technology and certification capabilities to extend the life of the aircraft, improvements in the education system were derived to improve the domestic additional type certification process, such as approval of remodeling agencies and appointment of qualifications for each professional technician.

Comparative Analysis of the Software Certification: RTCA DO-178C and RESSAC (RTCA DO-178C와 새로운 RESSAC 소프트웨어 인증기술의 비교 분석)

  • Lee, Dongmin;Lee, Dongwoo;Oh, Seungjun;Kwon, Oseong;Na, Jongwhoa
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.spc
    • /
    • pp.13-21
    • /
    • 2020
  • RTCA DO-178C is a development guideline to ensure aircraft system airworthiness. However, there is an opinion that the application of DO-178C to the development of UAV of more than MTOW 150 kg is over regulated because the severity of the risk from UAV is lower than that of normal aircraft. To address issue, EASA and FAA have been working on the Re-Engineering and Streamlining the Standards for Avionics Certification(RESSAC) project since 2016 with the goal of establishing a new certification scheme that simplifies existing aircraft certification procedures and standards. This paper analyzes the current DO-178C certification process and presents advantages by comparing and analyzing the new RESSAC certification process, which simplifies processes and outputs in comparing with the DO-178C certification process, while it ensures flight safety of the vehicle.

An Overview of Composite Material Qualification for Aircraft (항공기용 복합소재 인증 고찰)

  • Yong-Man Yang;Bum-Soo Yoon;Seung-Mok Jeon;Seung-Ken Lee;Un-Ryul Baek;Man-Seok Oh
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.361-368
    • /
    • 2023
  • Composite materials used in aircraft must be certified using approved materials to ensure the the airworthiness of the aircraft. Certification is carried out by verifying the physical properties and processes of the materials, and producing material and process specifications. The composite material certification system in ROK(Republic of Korea) has been established through the MOLIT(Ministry of Land, Infrastructure and Transport) pilot certification project for aircraft composite materials. Currently, the KIAST(Korea Institute of Aviation Safety Technology) operates and manages the certification and shared data system. This study identifies realm for improvement in the established certification system for aircraft composite materials based on empirical evidence and aims to propose measures for the certification and industrial promotion of domestically produced aircraft composite materials.

A Study on the Korea Weather Environment for Icing Airworthiness of Military Helicopter (군용헬기 결빙 감항인증을 위한 국내 기상환경에 관한 연구)

  • Hur, Jangwook;Shin, Baekcheon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.304-310
    • /
    • 2014
  • Based on atmosphere weather data by balloon in Osan and Gwangju area, if icing condition occurs in weather environment of altitude range where helicopter is operated was analyzed in quantitative way. Yearly icing occurrence frequency for daytime during recent three years was average 102 days in Osan, average 91 days in Gwangju. Icing weather environment to highly affect operation of helicopter varies a little according to analysis methods but icing intensity at MDT level was calculated in all the methods, and 14.5~38 times was suggested in Osan; 2.5~30 times in Gwangju. Icing at MDT level was calculated in common in all the analysis methods through wide periods such as Jan., Feb., Mar., and Nov. in Osan. In Gwangju, icing at MDT level was suggested focusing on Jan. only. Therefore, military helicopter developed in Korea is required to strive obtaining certificate of airworthiness about icing condition at MDT level for implementation of perfect operational mission and safe operation.

Bird Strike Analysis and Test Report of Dummy and Real Blade Antenna (더미 및 실 블레이드 안테나 조류충돌 해석 및 시험)

  • Jeong, Hanui
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.24-31
    • /
    • 2018
  • The objectives of this study is to carry out Bird strike analysis and tests of a blade antenna of aircraft. FEMs (Finite Element Models) were created for the analysis, while dummy and real antennas were used for the bird strike tests. In the analysis, birds were modeled with SPH (Smooth Particle Hydrodynamics) method, and the behaviors of the bird, antenna, and joint structure between antenna and aircraft fuselage were simulated with the FSI (Fluid-Structure Interaction) method. After the bird strike test was performed, the results of the analysis and test showed that they had a positive relationship. The damage of antenna and bolted joint was checked, and the structural integrity of the airframe was proved.