• Title/Summary/Keyword: 감차적분

Search Result 22, Processing Time 0.013 seconds

The Finite Element Analysis of Shell Structures Using Improved Shell Element (개선된 쉘 요소를 이용한 쉘 구조의 유한 요소 해석)

  • 허명재;김홍근;김진식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.449-459
    • /
    • 2000
  • The original Mindlin-type degenerated shell element perform reasonably well for moderately thick shell structures. However, when full integration for analysis of thin shell is used to evaluate the stiffness matrix, the stiffness of shell element is often over-estimated due to shear or membrane locking phenomena. To correct this problem, the formulation of the new degenerated shell element is derived by the combination of two different techniques. The first type of elements(TypeⅠ) has used assumed shear strains in the natural coordinate system to overcome the shear locking problem, the reduced integration technique in in-plane strains(membrane strains) to avoid membrane locking behaviour. Another element(TypeⅡ) has applied the assumed strains to both of membrane strain and transverse shear strains. The improved degenerated shell element has been tested by several numerical problems of shell structures. Numerical results indicate that this shell element shows fast convergence and reliable solutions.

  • PDF

Static and Dynamic Analysis of Plate Structures using a High Performance Finite Element (고성능 유한요소를 이용한 평판구조물의 정적 및 동적해석)

  • Han In-Seon;Kim Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.311-320
    • /
    • 2005
  • In this paper an enhanced quadratic finite element for static and dynamic analysis of plate structures is presented. The performance of a proposed plate element is improved by the coupled use of non conforming displacement modes, the selective integration scheme, and the assumed shear strain fields. An efficient direct modification method is also applied to this element to solve the problem such as failure of the patch test due to the adoption of non conforming modes. The proposed quadratic finite element does not show any spurious mechanism and does not produce shear locking phenomena even with distorted meshes. It is shown that the results obtained by this element converged to analytical solutions very rapidly tough numerical tests for standard benchmark problems. It is also noted that this element is applicable to transient dynamic analysis of Mindlin plates.