• Title/Summary/Keyword: 감정 표현 언어

Search Result 148, Processing Time 0.024 seconds

Emotion Recognition of Sentence by using Speech Act (화행 정보를 활용한 문장에서의 감정 인식)

  • Kim, Ki-Tai;Ryu, Pum-Mo;Choi, Yong-Seok;Lee, Sang-Tae
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.199-200
    • /
    • 2009
  • 자연스러운 대화가 가능한 인공지능 대화시스템을 구축하기 위해서는 사용자의 문장에 내재된 감정을 이해할 수 있는 시스템이어야만 한다. 또한 상호간의 대화를 통해서 풍겨지는 분위기를 파악할 수 있다면 사용자에게 마치 인간과 대화하는 듯한 자연스러움을 느끼도록 할 수 있을 것이다. 실제 대화에서 감정은 언어적인 표현뿐 아니라 비언어적인 표현으로도 표출되지만, 본 논문은 텍스트 상에서 언어적으로 표현되는 감정 정보를 인식하는데 초점을 둔다. 언어적인 표현으로 한정하여 감정을 인식하는 경우에는 감정을 직접 표현하고 있는 형용사나 동사가 중심이 된다. 본 논문에서는 형용사를 중심으로 하여 화행 정보와 결합하여 감정을 인식하는 시스템에 대해서 제시하고자 한다. 이 논문은 문장에 내재되어 있는 숨겨진 감정이나 분위기 등을 파악하기 위한 연구에 대한 선행 연구로서 텍스트 상에서 직접 드러나는 감정을 인식하기 위한 방법을 제안한다.

  • PDF

Component Analysis for Constructing an Emotion Ontology (감정 온톨로지의 구축을 위한 구성요소 분석)

  • Yoon, Aesun;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.19-24
    • /
    • 2009
  • 의사소통에서 대화자 간 감정의 이해는 메시지의 내용만큼이나 중요하다. 비언어적 요소에 의해 감정에 관한 더 많은 정보가 전달되고 있기는 하지만, 텍스트에도 화자의 감정을 나타내는 언어적 표지가 다양하고 풍부하게 녹아 들어 있다. 본 연구의 목적은 인간언어공학에 활용할 수 있는 감정 온톨로지를 설계하는 데 있다. 텍스트 기반 감정 처리 분야의 선행 연구가 감정을 분류하고, 각 감정의 서술적 어휘 목록을 작성하고, 이를 텍스트에서 검색함으로써, 추출된 감정의 정확도가 높지 않았다. 이에 비해, 본 연구에서 제안하는 감정 온톨로지는 다음과 같은 장점을 갖는다. 첫째, 감정 표현의 범주를 기술 대상(언어적 vs. 비언어적)과 방식(표현적, 서술적, 도상적)으로 분류하고, 이질적 특성을 갖는 6개 범주 간 상호 대응관계를 설정함으로써, 멀티모달 환경에 적용할 수 있다. 둘째, 세분화된 감정을 분류할 수 있되, 감정 간 차별성을 가질 수 있도록 24개의 감정 명세를 선별하고, 더 섬세하게 감정을 분류할 수 있는 속성으로 강도와 극성을 설정하였다. 셋째, 텍스트에 나타난 감정 표현을 명시적으로 구분할 수 있도록, 경험자 기술 대상과 방식 언어적 자질에 관한 속성을 도입하였다. 이때 본 연구에서 제안하는 감정 온톨로지가 한국어 처리에 국한되지 않고, 다국어 처리에 활용할 수 있도록 확장성을 고려했다.

  • PDF

Non-verbal Emotional Expressions for Social Presence of Chatbot Interface (챗봇의 사회적 현존감을 위한 비언어적 감정 표현 방식)

  • Kang, Minjeong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • The users of a chatbot messenger can be better engaged in the conversation if they feel intimacy with the chatbot. This can be achieved by the chatbot's effective expressions of human emotions to chatbot users. Thus motivated, this study aims to identify the appropriate emotional expressions of a chatbot that make people feel the social presence of the chatbot. In the background research, we obtained that facial expression is the most effective way of emotions and movement is important for relationship emersion. In a survey, we prepared moving text, moving gestures, and still emoticon that represent five emotions such as happiness, sadness, surprise, fear, and anger. Then, we asked the best way for them to feel social presence with a chatbot in each emotion. We found that, for an arousal and pleasant emotion such as 'happiness', people prefer moving gesture and text most while for unpleasant emotions such as 'sadness' and 'anger', people prefer emoticons. Lastly, for the neutral emotions such as 'surprise' and 'fear', people tend to select moving text that delivers clear meaning. We expect that this results of the study are useful for developing emotional chatbots that enable more effective conversations with users.

Impact Analysis of nonverbal multimodals for recognition of emotion expressed virtual humans (가상 인간의 감정 표현 인식을 위한 비언어적 다중모달 영향 분석)

  • Kim, Jin Ok
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.9-19
    • /
    • 2012
  • Virtual human used as HCI in digital contents expresses his various emotions across modalities like facial expression and body posture. However, few studies considered combinations of such nonverbal multimodal in emotion perception. Computational engine models have to consider how a combination of nonverbal modal like facial expression and body posture will be perceived by users to implement emotional virtual human, This paper proposes the impacts of nonverbal multimodal in design of emotion expressed virtual human. First, the relative impacts are analysed between different modals by exploring emotion recognition of modalities for virtual human. Then, experiment evaluates the contribution of the facial and postural congruent expressions to recognize basic emotion categories, as well as the valence and activation dimensions. Measurements are carried out to the impact of incongruent expressions of multimodal on the recognition of superposed emotions which are known to be frequent in everyday life. Experimental results show that the congruence of facial and postural expression of virtual human facilitates perception of emotion categories and categorical recognition is influenced by the facial expression modality, furthermore, postural modality are preferred to establish a judgement about level of activation dimension. These results will be used to implementation of animation engine system and behavior syncronization for emotion expressed virtual human.

Emotion Verb Dictionary for Emotional Analysis on Characters in Novel (소설 속 인물의 감정 분석을 위한 감정 용언 사전 제안)

  • Kyu-Hee Kim;Surin Lee;Myung-Jae Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.576-581
    • /
    • 2022
  • 감정 분석은 긍부정의 극성을 판단하는 감성 분석과 달리 텍스트로부터 구체적인 감정 유형을 분류해내는 과제이다. 본 논문에서는 소설 텍스트에 감정 분석을 수행하는 것을 새로운 과제로 설정하고, 이에 활용할 수 있는 감정 용언 사전을 소개한다. 이 사전에는 맥락과 상관없이 동일한 감정을 전달하는 직접 감정 표현과 맥락에 따라 다른 감정으로 해석될 수 있는 간접 감정 표현이 구분되어 있다. 우리는 이로써 한국어 자연어처리 연구자들이 소설의 풍부한 감정 표현 텍스트로부터 정확한 감정을 분류해낼 수 있도록 그 단초를 마련한다.

  • PDF

A Study on the Construction of an Emotion Corpus Using a Pre-trained Language Model (사전 학습 언어 모델을 활용한 감정 말뭉치 구축 연구 )

  • Yeonji Jang;Fei Li;Yejee Kang;Hyerin Kang;Seoyoon Park;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.238-244
    • /
    • 2022
  • 감정 분석은 텍스트에 표현된 인간의 감정을 인식하여 다양한 감정 유형으로 분류하는 것이다. 섬세한 인간의 감정을 보다 정확히 분류하기 위해서는 감정 유형의 분류가 무엇보다 중요하다. 본 연구에서는 사전 학습 언어 모델을 활용하여 우리말샘의 감정 어휘와 용례를 바탕으로 기쁨, 슬픔, 공포, 분노, 혐오, 놀람, 흥미, 지루함, 통증의 감정 유형으로 분류된 감정 말뭉치를 구축하였다. 감정 말뭉치를 구축한 후 성능 평가를 위해 대표적인 트랜스포머 기반 사전 학습 모델 중 RoBERTa, MultiDistilBert, MultiBert, KcBert, KcELECTRA. KoELECTRA를 활용하여 보다 넓은 범위에서 객관적으로 모델 간의 성능을 평가하고 각 감정 유형별 정확도를 바탕으로 감정 유형의 특성을 알아보았다. 그 결과 각 모델의 학습 구조가 다중 분류 말뭉치에 어떤 영향을 주는지 구체적으로 파악할 수 있었으며, ELECTRA가 상대적으로 우수한 성능을 보여주고 있음을 확인하였다. 또한 감정 유형별 성능을 비교를 통해 다양한 감정 유형 중 기쁨, 슬픔, 공포에 대한 성능이 우수하다는 것을 알 수 있었다.

  • PDF

Study on the Motion Acting in a Game Character Animation (게임캐릭터애니메이션 동작연기연구)

  • Hwang Kil-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.9
    • /
    • pp.116-123
    • /
    • 2006
  • This study aims to develop the game character to encompass more complicated motions, an upgrade from simple actions, to demonstrate different emotional state. The character takes a medium role in describing various situations by applying the motion of pantomimist and making a connection to the 3D character action. Motion acting is an upgraded version of the basic motion to show various emotional phases such as joy, anger, sorrow and pleasure. Moreover, it delivers clear messages through emotional acting in opposition to symbolic language and provides various perspectives of motion acting.

  • PDF

Emotion Prediction from Natural Language Documents ith Emotion Network (감정망을 활용한 자연언어 문서 상의 감정예측)

  • Min, Hye-Jin;Park, Jong-C.
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.191-199
    • /
    • 2004
  • 본 논문에서는 텍스트에 나타난 감정상태를 인지하는 모델을 제안하고, 이러한 모델을 활용하여 현재문장에서 나타난 감정 및 이후에 나타나게 될 감정상태들을 예측하는 시스템에 대하여 다룬다. 사용자의 감정을 인지하고 이에 대한 자연스러운 메시지, 행동 등을 통해 인간과 상호작용 할 수 있는 컴퓨터시스템을 구현하기 위해서는 현재의 감정상태뿐만 아니라 사용자 개개인의 정보 및 시스템과 상호작용하고 있는 상황의 정보 등을 통해 이후에 사용자가 느낄 수 있는 감정을 예측할 수 있는 감정모델이 요구된다. 본 논문에서는 파악된 이전의 감정상태 및 실제 감정과 표현된 감정간의 관계, 그리고 감정에 영향을 미친 주변대상의 특징 및 감정경험자의 목표와 행동이 반영된 상태-전이형태의 감정모델인 감정망(Emotion Network)을 제안한다. 감정망은 각 감정을 나타내는 상태(state)와 연결된 상태들 간의 전이(transition), 그리고 전이가 발생하기 위한 조건(condition)으로 구성된다. 본 논문에서는 텍스트 형태의 상담예시에 감정망을 활용하여 문헌의 감정어휘에 의해 직접적으로 표출되지 않는 감정을 예측할 수 있음을 보인다.

  • PDF

The Design of Context-Aware Middleware Architecture for Emotional Awareness Using Categorization of Feeling Words (감정표현단어 범주화 기반의 감정인식을 위한 상황인식 미들웨어 구조의 설계)

  • Kim, Jin-Bong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.998-1000
    • /
    • 2014
  • 상황인식 컴퓨팅 환경에서 가장 핵심적인 부분은 서비스를 제공받는 객체의 상황(Context)을 인식하고 정보화하여 그 상황에 따라서 객체 중심의 지능화된 최적의 서비스를 제공해 주는 것이다. 이러한 지능화된 최적의 서비스를 제공하기 위해서는 최적의 상황을 인식하는 상황인식 컴퓨팅 기술 연구와 그 상황을 설계하는 모델링 기술이 중요하다. 또한, 인간과 컴퓨터간의 의사소통을 원활히 할 수 있는 최적의 상황을 인식해야 한다. 현재까지 연구된 대부분의 상황인식 컴퓨팅 기술은 상황정보로 객체의 위치정보와 객체의 식별정보만을 주로 사용하고 있다. 그러므로 지정된 공간에서 상황을 발생시키는 객체를 식별하는 일과 식별된 객체가 발생하는 상황의 인식에만 주된 초점을 두고 있다. 그러나 본 논문에서는 객체의 감정표현단어를 상황정보로 사용하여 감정인식을 위한 상황인식 미들웨어로서 ECAM의 구조를 제안한다. ECAM은 감정표현단어의 범주화 기술을 기반으로 온톨로지를 구축하여 객체의 감정을 인식한다. 객체의 감정표현단어 정보를 상황정보로 사용하고, 인간의 감정에 영향을 미칠 수 있는 환경정보(온도, 습도, 날씨)를 추가하여 인식한다. 객체의 감정을 표현하기 위해서 OWL 언어를 사용하여 온톨로지를 구축하였으며, 감정추론 엔진은 Jena를 사용하였다.

A nonvocal communication system for emotional expression of characters in 2D games (2D 게임 캐릭터의 감정표현을 위한 비언어적 커뮤니케이션 시스템 제안)

  • Hong, Soo-Hyeon;Lee, Young-Suk;Lee, Mi-Young
    • Journal of Digital Contents Society
    • /
    • v.12 no.3
    • /
    • pp.397-407
    • /
    • 2011
  • Characters' nonvocal communication plays an essential role in delivering lines and expressing emotions. A character in a game is represented with its nonvocal behavior combined with a large number of lines. In this paper, characters' nonvocal communication behaviors are categorized and analyzed. Furthermore, characters' gestures and movements are designed with bones for character gesture generation in 2D games. Besides, characters' movements are visualized. In brief, a nonvocal communication system for emotional expression of characters in 2D games is proposed.