• Title/Summary/Keyword: 감정 탐지

Search Result 43, Processing Time 0.028 seconds

Detecting Android Emulators for Mobile Games (Focusing on Detecting Nox and LD Player) (모바일 게임용 안드로이드 에뮬레이터 탐지 기법 (Nox와 LD Player 탐지 기법 중심으로))

  • Kim, Nam-su;Kim, Seong-ho;Pack, Min-su;Cho, Seong-je
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • Many game and financial apps have emulator detection functionality to defend against dynamic reverse engineering attacks. However, existing Android emulator detection methods have limitations in detecting the latest mobile game emulators that are similar to actual devices. Therefore, in this paper, we propose a method to effectively detect Android emulators for mobile games based on Houdini module and strings of a library. The proposed method detects the two emulators, Nox and LD Player through specific strings included in libc.so of bionic, and an analysis of the system call execution process and memory mapping associated with the Houdini module.

CCR : Tree-pattern based Code-clone Detector (CCR : 트리패턴 기반의 코드클론 탐지기)

  • Lee, Hyo-Sub;Do, Kyung-Goo
    • Journal of Software Assessment and Valuation
    • /
    • v.8 no.2
    • /
    • pp.13-27
    • /
    • 2012
  • This paper presents a tree-pattern based code-clone detector as CCR(Code Clone Ransacker) that finds all clusterd dulpicate pattern by comparing all pair of subtrees in the programs. The pattern included in its entirely in another pattern is ignored since only the largest duplicate patterns are interesed. Evaluation of CCR is high precision and recall. The previous tree-pattern based code-clone detectors are known to have good precision and recall because of comparing program structure. CCR is still high precision and the maximum 5 times higher recall than Asta and about 1.9 times than CloneDigger. The tool also include the majority of Bellon's reference corpus.

Design and Implementation of the Detection Tool for Calculating the Similarity Degree between Two Computer Programs (SW복제도 감정을 위한 유사성 탐지도구의 설계 및 구현)

  • Bahng, Hyo-Keun;Cha, Tea-Won
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.485-488
    • /
    • 2008
  • 디지털 시대의 도래와 함께 국내외적으로 SW 및 디지털 콘텐츠로 확대되고 있는 표절과 불법복제 문제의 심각성은 날로 더해가고 있으며, 이에 따른 사회 경제적인 폐해 규모도 급격히 증가하고 있다. 따라서 SW표절과 불법복제로부터 저작권 보호를 위한 적극적 대응 방안으로 SW복제도 감정에 적합하고 유용한 SW시스템 개발의 필요성을 인식하게 되었다. 본 논문에서는 SW복제도 감정, 즉 두 프로그램 사이의 동일 유사성 정도를 판단하기 위해 제안된 유사성 탐지도구의 핵심 설계구조 및 기반 기술 등 전반적인 구현 메커니즘에 관하여 논한다.

Detects depression-related emotions in user input sentences (사용자 입력 문장에서 우울 관련 감정 탐지)

  • Oh, Jaedong;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1759-1768
    • /
    • 2022
  • This paper proposes a model to detect depression-related emotions in a user's speech using wellness dialogue scripts provided by AI Hub, topic-specific daily conversation datasets, and chatbot datasets published on Github. There are 18 emotions, including depression and lethargy, in depression-related emotions, and emotion classification tasks are performed using KoBERT and KOELECTRA models that show high performance in language models. For model-specific performance comparisons, we build diverse datasets and compare classification results while adjusting batch sizes and learning rates for models that perform well. Furthermore, a person performs a multi-classification task by selecting all labels whose output values are higher than a specific threshold as the correct answer, in order to reflect feeling multiple emotions at the same time. The model with the best performance derived through this process is called the Depression model, and the model is then used to classify depression-related emotions for user utterances.

Detecting Open Source-Code Plagiarism (오픈 소스코드 표절 탐지 기법)

  • Sojeong Han;Hwan-Seung Yong
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.1459-1461
    • /
    • 2008
  • 오픈 소스코드의 확대는 상용 프로그램에서의 활용 증대로 이어지고 있다. 컴퓨터 프로그램의 유사도 및 완성도 감정에서 오픈 소스코드의 비중이 증대됨에 따라서 오픈 소스코드의 탐지 방법이 요구된다. 본 논문에서는 프로그램 소스코드 검색 기법을 조사하고 평가하여 효과적인 탐지 기법을 제안한다.

A Study on the Establishment of the IDS Using Machine Learning (머신 러닝을 활용한 IDS 구축 방안 연구)

  • Kang, Hyun-Sun
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.2
    • /
    • pp.121-128
    • /
    • 2019
  • Computing systems have various vulnerabilities to cyber attacks. In particular, various cyber attacks that are intelligent in the information society have caused serious social problems and economic losses. Traditional security systems are based on misuse-based technology, which requires the continuous updating of new attack patterns and the real-time analysis of vast amounts of data generated by numerous security devices in order to accurately detect. However, traditional security systems are unable to respond through detection and analysis in real time, which can delay the recognition of intrusions and cause a lot of damage. Therefore, there is a need for a new security system that can quickly detect, analyze, and predict the ever-increasing cyber security threats based on machine learning and big data analysis models. In this paper, we present a IDS model that combines machine learning and big data technology.

Deep Learning based User Anomaly Detection Performance Evaluation to prevent Ransomware (랜섬웨어 방지를 위한 딥러닝 기반의 사용자 비정상 행위 탐지 성능 평가)

  • Lee, Ye-Seul;Choi, Hyun-Jae;Shin, Dong-Myung;Lee, Jung-Jae
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • With the development of IT technology, computer-related crimes are rapidly increasing, and in recent years, the damage to ransomware infections is increasing rapidly at home and abroad. Conventional security solutions are not sufficient to prevent ransomware infections, and to prevent threats such as malware and ransomware that are evolving, a combination of deep learning technologies is needed to detect abnormal behavior and abnormal symptoms. In this paper, a method is proposed to detect user abnormal behavior using CNN-LSTM model and various deep learning models. Among the proposed models, CNN-LSTM model detects user abnormal behavior with 99% accuracy.

Quantifying and Analyzing Vocal Emotion of COVID-19 News Speech Across Broadcasters in South Korea and the United States Based on CNN (한국과 미국 방송사의 코로나19 뉴스에 대해 CNN 기반 정량적 음성 감정 양상 비교 분석)

  • Nam, Youngja;Chae, SunGeu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.306-312
    • /
    • 2022
  • During the unprecedented COVID-19 outbreak, the public's information needs created an environment where they overwhelmingly consume information on the chronic disease. Given that news media affect the public's emotional well-being, the pandemic situation highlights the importance of paying particular attention to how news stories frame their coverage. In this study, COVID-19 news speech emotion from mainstream broadcasters in South Korea and the United States (US) were analyzed using convolutional neural networks. Results showed that neutrality was detected across broadcasters. However, emotions such as sadness and anger were also detected. This was evident in Korean broadcasters, whereas those emotions were not detected in the US broadcasters. This is the first quantitative vocal emotion analysis of COVID-19 news speech. Overall, our findings provide new insight into news emotion analysis and have broad implications for better understanding of the COVID-19 pandemic.

Brain-wave Analysis using fMRI, TRS and EEG for Human Emotion Recognition (fMRI와 TRS와 EEG 를 이용한 뇌파분석을 통한 사람의 감정 인식)

  • Kim, Ho-Duck;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.7-10
    • /
    • 2007
  • 많은 과학자들은 인간의 사고를 functional Magnetic Resonance Imaging (fMRI), Time Resolved Spectroscopy(TRS), Electroencephalography(EEG)등을 이용해서 두뇌 활동 영역을 연구하고 있다. 주로 의학 분야와 심리학의 영역에서 두뇌의 활동을 연구하여 간질이나 발작을 알아내고 거짓말 탐지 분야에서도 사용된다. 본 논문에서는 사람의 두뇌활동을 측정하여 인간의 감정을 인식하는 연구에 중점을 두었다. 특히 fMRI와 TRS 그리고 EEG를 이용해서 사람의 두뇌활동을 측정하는 연구를 하였다. 많은 연구자들이 한 가지 측정 장치만을 사용하여서 측정하거나 fMRI와 EEG를 동시에 측정하는 연구를 진행하고 있다. 현재에는 단순히 두뇌의 활동을 측정하거나 측정시 발생하는 잡음들을 제거하는 연구들에 중점을 두고 진행되고 있다. 본 연구에서는 fMRI와 TRS를 동시에 측정하여 얻은 두뇌 활동 데이터를 가지고 감정에 따른 활동영역의 EEG신호를 측정하였다. EEG 신호분석에 있어서 기존의 뇌파만을 가지고 특정을 찾아내는 것을 넘어서 각각의 채널에서 기록되는 뇌파의 파형을 주파수에 따라서 분류하고 정확한 측정을 위해 낮은 주파수를 제거하고 연구자가 필요한 부분의 뇌파를 분석하였다.

  • PDF