• 제목/요약/키워드: 감정 탐지

검색결과 43건 처리시간 0.026초

모바일 게임용 안드로이드 에뮬레이터 탐지 기법 (Nox와 LD Player 탐지 기법 중심으로) (Detecting Android Emulators for Mobile Games (Focusing on Detecting Nox and LD Player))

  • 김남수;김성호;박민수;조성제
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권1호
    • /
    • pp.41-50
    • /
    • 2021
  • 많은 게임 앱이나 금융 앱들의 경우, 동적 역공학 공격을 방어하기 위해 에뮬레이터 탐지 기능을 탑재하고 있다. 그러나 기존 안드로이드 에뮬레이터 탐지 방법들은, 실제 기기와 유사해진 최신 모바일 게임용 에뮬레이터를 탐지하는데 한계가 있다. 이에 본 논문에서는 Houdini 모듈과 라이브러리 문자열 기반으로 모바일 게임용 에뮬레이터를 효과적으로 탐지하는 기법을 제안한다. 구체적으로, bionic의 libc 라이브러리에 포함된 특정 문자열, Houdini 관련된 시스템 콜 수행과정 분석과 메모리 매핑을 통해, 잘 알려진 Nox와 LD Player 에뮬레이터를 탐지하는 기법을 제시한다.

CCR : 트리패턴 기반의 코드클론 탐지기 (CCR : Tree-pattern based Code-clone Detector)

  • 이효섭;도경구
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제8권2호
    • /
    • pp.13-27
    • /
    • 2012
  • 본 연구에서는 트리패턴 기반으로 코드클론을 탐지하는 도구인 CCR(Code Clone Ransacker)를 제안하고 구현하였다. CCR은 프로그램 트리의 모든 하위트리 쌍을 비교하여 중복된 부분인 트리패턴을 찾고 동일한 모양의 패턴들을 하나로 묶어 프로그램에 존재하는 클론들을 샅샅이 탐지한다. 이때 이미 찾은 패턴 내부의 클론 패턴을 비교대상에서 제외하여 중복계산을 하지 않아 불필요한 예산을 최대한 줄인다. 실험으로 CCR의 성능을 평가한 결과, CCR의 정확성과 탐지성은 높다. 프로그램의 구조를 비교하는 기존의 트리패턴 기반의 코드클론 탐지 도구들의 정확성과 탐지성은 이미 좋은 것으로 알려져 있지만, CCR은 높은 정확성을 유지하면서 탐지성은 기존의 Asta보다는 최대 5배, CloneDigger보다는 약 1.9배 높다. 그리고 CCR이 찾은 코드클론은 기존의 코드클론 표본 집합체의 클론을 대부분 포함한다.

SW복제도 감정을 위한 유사성 탐지도구의 설계 및 구현 (Design and Implementation of the Detection Tool for Calculating the Similarity Degree between Two Computer Programs)

  • 방효근;차태원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.485-488
    • /
    • 2008
  • 디지털 시대의 도래와 함께 국내외적으로 SW 및 디지털 콘텐츠로 확대되고 있는 표절과 불법복제 문제의 심각성은 날로 더해가고 있으며, 이에 따른 사회 경제적인 폐해 규모도 급격히 증가하고 있다. 따라서 SW표절과 불법복제로부터 저작권 보호를 위한 적극적 대응 방안으로 SW복제도 감정에 적합하고 유용한 SW시스템 개발의 필요성을 인식하게 되었다. 본 논문에서는 SW복제도 감정, 즉 두 프로그램 사이의 동일 유사성 정도를 판단하기 위해 제안된 유사성 탐지도구의 핵심 설계구조 및 기반 기술 등 전반적인 구현 메커니즘에 관하여 논한다.

사용자 입력 문장에서 우울 관련 감정 탐지 (Detects depression-related emotions in user input sentences)

  • 오재동;오하영
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1759-1768
    • /
    • 2022
  • 본 논문은 AI Hub에서 제공하는 웰니스 대화 스크립트, 주제별 일상 대화 데이터세트와 Github에 공개된 챗봇 데이터세트를 활용하여 사용자의 발화에서 우울 관련 감정을 탐지하는 모델을 제안한다. 우울 관련 감정에는 우울감, 무기력을 비롯한 18가지 감정이 존재하며, 언어 모델에서 높은 성능을 보이는 KoBERT와 KoELECTRA 모델을 사용하여 감정 분류 작업을 수행한다. 모델별 성능 비교를 위해 우리는 데이터세트를 다양하게 구축하고, 좋은 성능을 보이는 모델에 대해 배치 크기와 학습률을 조정하면서 분류 결과를 비교한다. 더 나아가, 사람은 동시에 여러 감정을 느끼는 것을 반영하기 위해, 모델의 출력값이 특정 임계치보다 높은 레이블들을 모두 정답으로 선정함으로써, 다중 분류 작업을 수행한다. 이러한 과정을 통해 도출한 성능이 가장 좋은 모델을 Depression model이라 부르며, 이후 사용자 발화에 대해 우울 관련 감정을 분류할 때 해당 모델을 사용한다.

오픈 소스코드 표절 탐지 기법 (Detecting Open Source-Code Plagiarism)

  • 한소정;용환승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.1459-1461
    • /
    • 2008
  • 오픈 소스코드의 확대는 상용 프로그램에서의 활용 증대로 이어지고 있다. 컴퓨터 프로그램의 유사도 및 완성도 감정에서 오픈 소스코드의 비중이 증대됨에 따라서 오픈 소스코드의 탐지 방법이 요구된다. 본 논문에서는 프로그램 소스코드 검색 기법을 조사하고 평가하여 효과적인 탐지 기법을 제안한다.

머신 러닝을 활용한 IDS 구축 방안 연구 (A Study on the Establishment of the IDS Using Machine Learning)

  • 강현선
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제15권2호
    • /
    • pp.121-128
    • /
    • 2019
  • 컴퓨팅 시스템들은 사이버공격에 대한 다양한 취약점을 가지고 있다. 특히 정보화 사회에서 지능화된 다양한 사이버공격은 사회적으로 심각한 문제와 경제적 손실을 초래한다. 전통적인 침입탐지시스템은 오용침입탐지(misuse)기반의 기술로 사이버공격을 정확하게 탐지하기 위해서는 지속적인 새로운 공격 패턴 갱신과 수많은 보안 장비에서 생성되는 방대한 양의 데이터에 대한 실시간 분석을 해야만 한다. 하지만 전통적인 보안시스템은 실시간으로 탐지 및 분석을 통한 대응을 할 수 없기 때문에 침해 사고의 인지시점이 지체되어 많은 피해를 야기할 수도 있다. 따라서 머신 러닝과 빅데이터 분석 모델 기반으로 끊임없이 증가하는 사이버 보안 위협을 신속하게 탐지, 분석을 통한 대응과 예측할 수 있는 새로운 보안 시스템이 필요하다. 본 논문에서는 머신 러닝과 빅데이터 기술을 활용한 IDS 구축 방안을 제시한다.

랜섬웨어 방지를 위한 딥러닝 기반의 사용자 비정상 행위 탐지 성능 평가 (Deep Learning based User Anomaly Detection Performance Evaluation to prevent Ransomware)

  • 이예슬;최현재;신동명;이정재
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제15권2호
    • /
    • pp.43-50
    • /
    • 2019
  • IT 기술의 발달에 따라, 컴퓨터 관련 범죄가 빠르게 급증하고 있으며 특히 최근에는 국내외에서 랜섬웨어감염에 대한 피해가 급격하게 늘어나고 있다. 기존의 보안 솔루션으로는 랜섬웨어 감염을 방지하기에는 역부족이며 나날이 발전하는 악성코드 및 랜섬웨어와 같은 위협을 방지하기 위해서는 딥러닝 기술을 결합하여 비정상 행위 및 이상 징후를 탐지하는 기법이 필요하다. 본 논문에서는 CNN-LSTM 모델 및 다양한 딥러닝 모델을 사용하여 사용자 비정상 행위를 탐지하는 기법을 제안했으며, 그중 제안하는 모델인 CNN-LSTM 모델의 경우 액 99%의 정확도로 사용자 비정상 행위를 탐지해내는 것을 확인할 수 있었다. 본 연구를 활용하여 사용자 비정상 행위의 랜섬웨어 특징점을 파악하여 랜섬웨어를 방지하는 시스템을 마련하는 데 도움을 줄 수 있을 것으로 기대한다.

한국과 미국 방송사의 코로나19 뉴스에 대해 CNN 기반 정량적 음성 감정 양상 비교 분석 (Quantifying and Analyzing Vocal Emotion of COVID-19 News Speech Across Broadcasters in South Korea and the United States Based on CNN)

  • 남영자;채선규
    • 한국정보통신학회논문지
    • /
    • 제26권2호
    • /
    • pp.306-312
    • /
    • 2022
  • 전례 없는 코로나19 팬데믹 상황에서 대중의 정보에의 요구는 과도한 코로나19 뉴스 소비를 조장하였다. 뉴스는 대중의 심리적 안녕에도 영향을 미치기에 뉴스 보도 양태에 대한 각별한 주의가 요구된다. 이에 본 연구는 한국과 미국의 주요 뉴스 미디어의 코로나19 관련 뉴스의 음성 감정 양상을 합성곱 신경망에 기반하여 분석하였다. 분석 결과, 대부분의 뉴스 미디어에서 중립이 탐지되었으나 슬픔과 분노도 탐지되었다. 이러한 양상은한국의 뉴스 미디어에서 두드러진 반면 미국 뉴스 미디어에서는 나타나지 않았다. 본 연구는 코로나19 뉴스의 첫 음성 감정 분석 연구로, 뉴스의 감정 분석에 있어 새로운 방향을 제시할 뿐 아니라 팬데믹에 대한 이해 증진에 있어 광범위한 함의를 지닌다.

fMRI와 TRS와 EEG 를 이용한 뇌파분석을 통한 사람의 감정 인식 (Brain-wave Analysis using fMRI, TRS and EEG for Human Emotion Recognition)

  • 김호덕;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.7-10
    • /
    • 2007
  • 많은 과학자들은 인간의 사고를 functional Magnetic Resonance Imaging (fMRI), Time Resolved Spectroscopy(TRS), Electroencephalography(EEG)등을 이용해서 두뇌 활동 영역을 연구하고 있다. 주로 의학 분야와 심리학의 영역에서 두뇌의 활동을 연구하여 간질이나 발작을 알아내고 거짓말 탐지 분야에서도 사용된다. 본 논문에서는 사람의 두뇌활동을 측정하여 인간의 감정을 인식하는 연구에 중점을 두었다. 특히 fMRI와 TRS 그리고 EEG를 이용해서 사람의 두뇌활동을 측정하는 연구를 하였다. 많은 연구자들이 한 가지 측정 장치만을 사용하여서 측정하거나 fMRI와 EEG를 동시에 측정하는 연구를 진행하고 있다. 현재에는 단순히 두뇌의 활동을 측정하거나 측정시 발생하는 잡음들을 제거하는 연구들에 중점을 두고 진행되고 있다. 본 연구에서는 fMRI와 TRS를 동시에 측정하여 얻은 두뇌 활동 데이터를 가지고 감정에 따른 활동영역의 EEG신호를 측정하였다. EEG 신호분석에 있어서 기존의 뇌파만을 가지고 특정을 찾아내는 것을 넘어서 각각의 채널에서 기록되는 뇌파의 파형을 주파수에 따라서 분류하고 정확한 측정을 위해 낮은 주파수를 제거하고 연구자가 필요한 부분의 뇌파를 분석하였다.

  • PDF