본 논문에서는 인간의 표정과 목소리를 기반으로 한 감정 분석기를 제안한다. 제안하는 분석기들은 수많은 인간의 표정 중 뚜렷한 특징을 가진 표정 7가지를 별도의 클래스로 구성하며, DNN 모델을 수정하여 사용하였다. 또한, 음성 데이터는 학습 데이터 증식을 위한 Data Augmentation을 하였으며, 학습 도중 과적합을 방지하기 위해 콜백 함수를 사용하여 가장 최적의 성능에 도달했을 때, Early-stop 되도록 설정했다. 제안하는 표정 감정 분석 모델의 학습 결과는 val loss값이 0.94, val accuracy 값은 0.66이고, 음성 감정 분석 모델의 학습 결과는 val loss 결과값이 0.89, val accuracy 값은 0.65로, OpenCV 라이브러리를 사용한 모델 테스트는 안정적인 결과를 도출하였다.
본 논문은 다양한 음성 특징과 텍스트를 이용한 멀티 모드 순환신경망 네트워크를 사용하여 음성을 통한 범주형(categorical) 분류 방법과 Arousal-Valence(AV) 도메인에서의 분류방법을 통해 감정인식 결과를 제시한다. 본 연구에서는 음성 특징으로는 MFCC, Energy, Velocity, Acceleration, Prosody 및 Mel Spectrogram 등의 다양한 특징들의 조합을 이용하였고 이에 해당하는 텍스트 정보를 순환신경망 기반 네트워크를 통해 융합하여 범주형 분류 방법과 과 AV 도메인에서의 분류 방법을 이용해 감정을 이산적으로 분류하였다. 실험 결과, 음성 특징의 조합으로 MFCC Energy, Velocity, Acceleration 각 13 차원과 35 차원의 Prosody 의 조합을 사용하였을 때 범주형 분류 방법에서는 75%로 다른 특징 조합들 보다 높은 결과를 보였고 AV 도메인 에서도 같은 음성 특징의 조합이 Arousal 55.3%, Valence 53.1%로 각각 가장 높은 결과를 보였다.
Kim, Sung-Ill;Lee, Sang-Hoon;Shin, Wee-Jae;Park, Nam-Chun
한국지능시스템학회:학술대회논문집
/
한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
/
pp.560-563
/
2004
본 논문은 분노, 행복, 평정, 슬픔, 놀람 둥과 같은 인간의 감정상태를 인식하는 새로운 접근에 대해 설명한다. 이러한 시도는 이산길이를 포함하는 연속 은닉 마르코프 모델(HMM)을 사용함으로써 이루어진다. 이를 위해, 우선 입력음성신호로부터 감정의 특징 파라메타를 정의 한다. 본 연구에서는 피치 신호, 에너지, 그리고 각각의 미분계수 등의 운율 파라메타를 사용하고, HMM으로 훈련과정을 거친다. 또한, 화자적응을 위해서 최대 사후확률(MAP) 추정에 기초한 감정 모델이 이용된다. 실험 결과, 음성에서의 감정 인식률은 적응 샘플수의 증가에 따라 점차적으로 증가함을 보여준다.
본 논문에서는 효과적인 감정인식을 위한 효과적인 특징 벡터를 생성한다. 이를 위해서 음성 데이터 셋 RAVDESS를 이용하였으며, 그 중 neutral, calm, happy, sad 총 4가지 감정을 나타내는 음성 신호를 사용하였다. 본 논문에서는 기존에 감정인식에 사용되는 MFCC1~13차 계수와 pitch, ZCR, peakenergy 중에서 효과적인 특징을 추출하기 위해 클래스 간, 클래스 내 분산의 비를 이용하였다. 실험결과 감정인식에 사용되는 특징 벡터들 중 peakenergy, pitch, MFCC2, MFCC3, MFCC4, MFCC12, MFCC13이 효과적임을 확인하였다.
반려견의 행동인식기술은 다양한 센서들에서 입력되는 반려견의 동작과 관련된 정보를 분석하고 해석하여 반려견이 어떤 행동을 취하고 있는지를 인식하는 기술이다. 음성인식기술은 컴퓨터가 청각 자료를 수집, 분석하여 훈련된 데이터와 비교를 통해 소리를 분류하는 기술이다. 본 논문에서는 딥러닝을 기반으로 행동인식기술과 음성인식기술을 적용하여 반려견의 감정을 판단하는 기법을 제안한다. 이러한 기법은 반려견의 감정을 쉽게 파악하여 반려견 보호자가 반려견의 행동과 감정에 대한 이해를 쉽고 빠르게 할 수 있으므로, 보호자에게 즐거운 반려 생활이 가능하도록 도움을 줄 수 있다.
Seong-Gun Yun;Hyeok-Chan Kwon;Eunju Park;Young-Bok Cho
한국컴퓨터정보학회논문지
/
제29권9호
/
pp.79-87
/
2024
본 연구는 청각 장애인의 의사소통 개선을 목표로, 음성 데이터에서 감정을 인식하고 분류하는 인공지능 모델을 개발하였다. 이를 위해 CNN-Transformer, HuBERT-Transformer, 그리고 Wav2Vec 2.0 모델을 포함하는 세 가지 주요 인공지능 모델을 활용하여, 사용자의 음성을 실시간으로 분석하고 감정을 분류한다. 음성 데이터의 특징을 효과적으로 추출하기 위해 Mel-Frequency Cepstral Coefficient(MFCC)와 같은 변환 방식을 적용, 음성의 복잡한 특성과 미묘한 감정 변화를 정확하게 포착하고자 하였다. 실험 결과, HuBERT-Transformer 모델이 가장 높은 정확도를 보임으로써, 음성기반 감정 인식 분야에서의 사전 학습된 모델과 복잡한 학습 구조의 융합이 효과적임을 입증하였다. 본 연구는 음성 데이터를 통한 감정 인식 기술의 발전 가능성을 제시하며, 청각 장애인의 의사소통과 상호작용 개선에 기여할 수 있는 새로운 방안을 모색한다는 점에서 의의를 가진다.
본 논문에서는 주목 메커니즘 기반의 심층 신경망을 사용한 음성 감정인식 방법을 제안한다. 제안하는 방식은 CNN(Convolution Neural Networks), GRU(Gated Recurrent Unit), DNN(Deep Neural Networks)의 결합으로 이루어진 심층 신경망 구조와 주목 메커니즘으로 구성된다. 음성의 스펙트로그램에는 감정에 따른 특징적인 패턴이 포함되어 있으므로 제안하는 방식에서는 일반적인 CNN에서 컨벌루션 필터를 tuned Gabor 필터로 사용하는 GCNN(Gabor CNN)을 사용하여 패턴을 효과적으로 모델링한다. 또한 CNN과 FC(Fully-Connected)레이어 기반의 주목 메커니즘을 적용하여 추출된 특징의 맥락 정보를 고려한 주목 가중치를 구해 감정인식에 사용한다. 본 논문에서 제안하는 방식의 검증을 위해 6가지 감정에 대해 인식 실험을 진행하였다. 실험 결과, 제안한 방식이 음성 감정인식에서 기존의 방식보다 더 높은 성능을 보였다.
본 논문은 다차원 정서모델 기반 영상, 음성, 뇌파를 이용한 멀티모달 복합 감정인식 시스템을 제안한다. 사용자의 얼굴 영상, 목소리 및 뇌파를 기반으로 각각 추출된 특징을 심리학 및 인지과학 분야에서 인간의 감정을 구성하는 정서적 감응요소로 알려진 다차원 정서모델(Arousal, Valence, Dominance)에 대한 명시적 감응 정도 데이터로 대응하여 스코어링(Scoring)을 수행한다. 이후, 스코어링을 통해 나온 결과 값을 이용하여 다차원으로 구성되는 3차원 감정 모델에 매핑하여 인간의 감정(단일감정, 복합감정)뿐만 아니라 감정의 세기까지 인식한다.
본 논문은 화자 및 문장 독립적 감정 인식을 위한 특징 파라메터와 패턴인식 알고리즘에 관하여 연구하였다. 본 논문에서는 기존 감정 인식 방법과의 비교를 위하여 KNN을 이용한 알고리즘을 사용하였고, 화자 및 문장 독립적 감정 인식을 위하여 VQ와 GMM을 이용한 알고리즘을 사용하였다. 그리고 특징으로 사용한 음성 파라메터로 피치, 에너지, MFCC, 그리고 그것들의 1, 2차 미분을 사용하였다. 실험을 통해 피치와 에너지 파라메터를 사용하였을 때보다 MFCC와 그 미분들을 특징 파라메터로 사용하였을 때 더 좋은 감정 인식 성능을 보였으며, KNN과 VQ보다 GMM을 기반으로 한 인식 알고리즘이 화자 및 문장 독립적 감정 인식 시스템에서 보다 적합하였다.
본 논문에서는 wav2vec 2.0과 KcELECTRA 모델을 활용하여 멀티모달 학습을 통한 감정 분류 방법을 탐색한다. 음성 데이터와 텍스트 데이터를 함께 활용하는 멀티모달 학습이 음성만을 활용하는 방법에 비해 감정 분류 성능을 유의미하게 향상시킬 수 있음이 알려져 있다. 본 연구는 자연어 처리 분야에서 우수한 성능을 보인 BERT 및 BERT 파생 모델들을 비교 분석하여 텍스트 데이터의 효과적인 특징 추출을 위한 최적의 모델을 선정하여 텍스트 처리 모델로 활용한다. 그 결과 KcELECTRA 모델이 감정 분류 작업에서 뛰어난 성능이 보임을 확인하였다. 또한, AI-Hub에 공개되어 있는 데이터 세트를 활용한 실험을 통해 텍스트 데이터를 함께 활용하면 음성 데이터만 사용할 때보다 더 적은 양의 데이터로도 더 우수한 성능을 달성할 수 있음을 발견하였다. 실험을 통해 KcELECTRA 모델을 활용한 경우가 정확도 96.57%로 가장 우수한 성능을 보였다. 이는 멀티모달 학습이 감정 분류와 같은 복잡한 자연어 처리 작업에서 의미 있는 성능 개선을 제공할 수 있음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.