• Title/Summary/Keyword: 감정 모델

Search Result 497, Processing Time 0.023 seconds

Emotion Prediction from Natural Language Documents ith Emotion Network (감정망을 활용한 자연언어 문서 상의 감정예측)

  • Min, Hye-Jin;Park, Jong-C.
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.191-199
    • /
    • 2004
  • 본 논문에서는 텍스트에 나타난 감정상태를 인지하는 모델을 제안하고, 이러한 모델을 활용하여 현재문장에서 나타난 감정 및 이후에 나타나게 될 감정상태들을 예측하는 시스템에 대하여 다룬다. 사용자의 감정을 인지하고 이에 대한 자연스러운 메시지, 행동 등을 통해 인간과 상호작용 할 수 있는 컴퓨터시스템을 구현하기 위해서는 현재의 감정상태뿐만 아니라 사용자 개개인의 정보 및 시스템과 상호작용하고 있는 상황의 정보 등을 통해 이후에 사용자가 느낄 수 있는 감정을 예측할 수 있는 감정모델이 요구된다. 본 논문에서는 파악된 이전의 감정상태 및 실제 감정과 표현된 감정간의 관계, 그리고 감정에 영향을 미친 주변대상의 특징 및 감정경험자의 목표와 행동이 반영된 상태-전이형태의 감정모델인 감정망(Emotion Network)을 제안한다. 감정망은 각 감정을 나타내는 상태(state)와 연결된 상태들 간의 전이(transition), 그리고 전이가 발생하기 위한 조건(condition)으로 구성된다. 본 논문에서는 텍스트 형태의 상담예시에 감정망을 활용하여 문헌의 감정어휘에 의해 직접적으로 표출되지 않는 감정을 예측할 수 있음을 보인다.

  • PDF

A Study on the Construction of an Emotion Corpus Using a Pre-trained Language Model (사전 학습 언어 모델을 활용한 감정 말뭉치 구축 연구 )

  • Yeonji Jang;Fei Li;Yejee Kang;Hyerin Kang;Seoyoon Park;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.238-244
    • /
    • 2022
  • 감정 분석은 텍스트에 표현된 인간의 감정을 인식하여 다양한 감정 유형으로 분류하는 것이다. 섬세한 인간의 감정을 보다 정확히 분류하기 위해서는 감정 유형의 분류가 무엇보다 중요하다. 본 연구에서는 사전 학습 언어 모델을 활용하여 우리말샘의 감정 어휘와 용례를 바탕으로 기쁨, 슬픔, 공포, 분노, 혐오, 놀람, 흥미, 지루함, 통증의 감정 유형으로 분류된 감정 말뭉치를 구축하였다. 감정 말뭉치를 구축한 후 성능 평가를 위해 대표적인 트랜스포머 기반 사전 학습 모델 중 RoBERTa, MultiDistilBert, MultiBert, KcBert, KcELECTRA. KoELECTRA를 활용하여 보다 넓은 범위에서 객관적으로 모델 간의 성능을 평가하고 각 감정 유형별 정확도를 바탕으로 감정 유형의 특성을 알아보았다. 그 결과 각 모델의 학습 구조가 다중 분류 말뭉치에 어떤 영향을 주는지 구체적으로 파악할 수 있었으며, ELECTRA가 상대적으로 우수한 성능을 보여주고 있음을 확인하였다. 또한 감정 유형별 성능을 비교를 통해 다양한 감정 유형 중 기쁨, 슬픔, 공포에 대한 성능이 우수하다는 것을 알 수 있었다.

  • PDF

Empowering Emotion Classification Performance Through Reasoning Dataset From Large-scale Language Model (초거대 언어 모델로부터의 추론 데이터셋을 활용한 감정 분류 성능 향상)

  • NunSol Park;MinHo Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.59-61
    • /
    • 2023
  • 본 논문에서는 감정 분류 성능 향상을 위한 초거대 언어모델로부터의 추론 데이터셋 활용 방안을 제안한다. 이 방안은 Google Research의 'Chain of Thought'에서 영감을 받아 이를 적용하였으며, 추론 데이터는 ChatGPT와 같은 초거대 언어 모델로 생성하였다. 본 논문의 목표는 머신러닝 모델이 추론 데이터를 이해하고 적용하는 능력을 활용하여, 감정 분류 작업의 성능을 향상시키는 것이다. 초거대 언어 모델(ChatGPT)로부터 추출한 추론 데이터셋을 활용하여 감정 분류 모델을 훈련하였으며, 이 모델은 감정 분류 작업에서 향상된 성능을 보였다. 이를 통해 추론 데이터셋이 감정 분류에 있어서 큰 가치를 가질 수 있음을 증명하였다. 또한, 이 연구는 기존에 감정 분류 작업에 사용되던 데이터셋만을 활용한 모델과 비교하였을 때, 추론 데이터를 활용한 모델이 더 높은 성능을 보였음을 증명한다. 이 연구를 통해, 적은 비용으로 초거대 언어모델로부터 생성된 추론 데이터셋의 활용 가능성을 보여주고, 감정 분류 작업 성능을 향상시키는 새로운 방법을 제시한다. 제시한 방안은 감정 분류뿐만 아니라 다른 자연어처리 분야에서도 활용될 수 있으며, 더욱 정교한 자연어 이해와 처리가 가능함을 시사한다.

  • PDF

Model Behavior selection based on the motivation and hierarchicalized emotions. (동기와 계층화된 감정에 기반한 로봇의 행동결정)

  • 안형철;박명수;최진영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.29-33
    • /
    • 2004
  • 본 논문에서는 인간과 엔터테인먼트 로봇의 상호작용을 위해, 동기(motivation)와 계층화된 감정(hierarchical emotion)에 기반한 행동결정 모델을 설계하였다. 감정모델은 계층화되고 학습 가능하도록 하여, 인간의 행동결정과 유사하게 동작하도록 하였다. 감정모델을 통해 로봇의 행동에 대한 인간의 반응이 학습되는데, 그 결과가 행동결정에 영향을 주어 로봇의 행동에 반영되도록 하였다. 감정모델과 함께 동기가 행동결정에 영향을 주는데, 초기에는 외부에서 주어지는 동기가 주로 행동을 결정하고, 감정모델이 학습될수록 점차 감정의 영향이 증가하여 동기와 계층화된 감정을 함께 고려하여 행동을 결정하도록 하였다. 그럼으로써, 인간과의 상호작용을 통해 정보를 축적하고 인간의 반응에 적응해나갈 수 있게 하였다

  • PDF

A Design of Artificial Emotion Model (인공 감정 모델의 설계)

  • Lee, In-Geun;Seo, Seok-Tae;Jeong, Hye-Cheon;Gwon, Sun-Hak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.58-62
    • /
    • 2007
  • 인간이 생성한 음성, 표정 영상, 문장 등으로부터 인간의 감정 상태를 인식하는 연구와 함께, 인간의 감정을 모방하여 다양한 외부 자극으로 감정을 생성하는 인공 감정(Artificial Emotion)에 관한 연구가 이루어지고 있다. 그러나 기존의 인공 감정 연구는 외부 감정 자극에 대한 감정 변화 상태를 선형적, 지수적으로 변화시킴으로써 감정 상태가 급격하게 변하는 형태를 보인다. 본 논문에서는 외부 감정 자극의 강도와 빈도뿐만 아니라 자극의 반복 주기를 감정 상태에 반영하고, 시간에 따른 감정의 변화를 Sigmoid 곡선 형태로 표현하는 감정 생성 모델을 제안한다. 그리고 기존의 감정 자극에 대한 회상(recollection)을 통해 외부 감정 자극이 없는 상황에서도 감정을 생성할 수 있는 인공 감정 시스템을 제안한다.

  • PDF

Movie Corpus Emotional Analysis Using Emotion Vocabulary Dictionary (감정 어휘 사전을 활용한 영화 리뷰 말뭉치 감정 분석)

  • Jang, Yeonji;Choi, Jiseon;Park, Seoyoon;Kang, Yejee;Kang, Hyerin;Kim, Hansaem
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.379-383
    • /
    • 2021
  • 감정 분석은 텍스트 데이터에서 인간이 느끼는 감정을 다양한 감정 유형으로 분류하는 것이다. 그러나 많은 연구에서 감정 분석은 긍정과 부정, 또는 중립의 극성을 분류하는 감성 분석의 개념과 혼용되고 있다. 본 연구에서는 텍스트에서 느껴지는 감정들을 다양한 감정 유형으로 분류한 감정 말뭉치를 구축하였는데, 감정 말뭉치를 구축하기 위해 심리학 모델을 기반으로 분류한 감정 어휘 사전을 사용하였다. 9가지 감정 유형으로 분류된 한국어 감정 어휘 사전을 바탕으로 한국어 영화 리뷰 말뭉치에 9가지 감정 유형의 감정을 태깅하여 감정 분석 말뭉치를 구축하고, KcBert에 학습시켰다. 긍정과 부정으로 분류된 데이터로 사전 학습된 KcBert에 9개의 유형으로 분류된 데이터를 학습시켜 기존 모델과 성능 비교를 한 결과, KcBert는 다중 분류 모델에서도 우수한 성능을 보였다.

  • PDF

Sentiment Analysis System by Using BERT Language Model (BERT 언어 모델을 이용한 감정 분석 시스템)

  • Kim, Taek-Hyun;Cho, Dan-Bi;Lee, Hyun-Young;Won, Hye-Jin;Kang, Seung-Shik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.975-977
    • /
    • 2020
  • 감정 분석은 문서의 주관적인 감정, 의견, 기분을 파악하기 위한 방법으로 소셜 미디어, 온라인 리뷰 등 다양한 분야에서 활용된다. 문서 내 텍스트가 나타내는 단어와 문맥을 기반으로 감정 수치를 계산하여 긍정 또는 부정 감정을 결정한다. 2015년에 구축된 네이버 영화평 데이터 20 만개에 12 만개를 추가 구축하여 감정 분석 연구를 진행하였으며 언어 모델로는 최근 자연어처리 분야에서 높은 성능을 보여주는 BERT 모델을 이용하였다. 감정 분석 기법으로는 LSTM(Long Short-Term Memory) 등 기존의 기계학습 기법과 구글의 다국어 BERT 모델, 그리고 KoBERT 모델을 이용하여 감정 분석의 성능을 비교하였으며, KoBERT 모델이 89.90%로 가장 높은 성능을 보여주었다.

A Study of Emotional Dimension that takes into account the Characteristics of the Arousal axis (각성 축의 특성을 고려한 감정차원에 관한 연구)

  • Han, Eui-Hwan;Cha, Hyung-Tai
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.57-64
    • /
    • 2014
  • In this paper, we verify the relation between elements (active and inactive) of Russell's emotional dimension ("A Circumplex Model") to propose a new representing method. Russell's emotional dimension expresses emotional words (happy, joy, sad, nervous, etc.) as a point on the two dimensions (Arousal and Valence). It is most commonly used in many filed such as Science of Emotion & Sensibility, Human-Computer Interaction (HCI), and Psychology etc. But other researchers have insisted that Russell's emotional dimension have to be modified because of its inherent problems. Such problems included the possibility of mixed feelings, the difference of emotion and sensibility, and the difference of Arousal axis and Valence axis. Therefore, we verify relationship of A Circumplex Model's elements (active and inactive) and find how to people express their Arousal feelings using survey. We finally propose new method to express emotion in Russell's emotional dimension. Using this method, we can solve Russell's problems and compensate other researches.

An Integrated Extension to On-line Commerce Acceptance: A Combination of Trust and Affect into the Technology Acceptance Model (온라인 상거래 수용에 관한 통합적 확장:기술수용모델에 대한 신뢰와 감정의 결합)

  • 임양환;박세훈
    • Asia Marketing Journal
    • /
    • v.6 no.1
    • /
    • pp.57-86
    • /
    • 2004
  • 인터넷관련 혁신의 수용을 설명하려는 많은 연구들에서 정보기술수용모델(TAM)이 적용되었지만, 온라인 상거래의 수용을 정확히 설명하기 위해서는 인터넷을 통해 상거래를 할 때 발생하는 특성을 반영해야 한다. 본 연구에서는 온라인 상거래관련 기존 연구들을 바탕으로 TAM을 확장하는 변수로 신뢰와 감정을 추가하고 변수들의 영향 관계를 통합적으로 구조화하였다. 이러한 확장 구조를 통해, 온라인 상거래 수용을 설명하는데 TAM의 원형을 그대로 적용하거나 신뢰 혹은 감정만을 고려한 기존 연구들이 갖는 설명의 제한점을 극복하고자 하였다. 그리고 온라인 상거래의 수용에 대한 전체적인 틀을 파악하고, 소비자가 온라인 상거래를 수용하는 측면에서 온라인 상거래의 성공을 결정짓는 주요한 변수들의 관계를 명확히 하였다. 신뢰, 감정, 사용의 용이함이 유용성을 지각하고 사이트 사용의도를 갖고 상거래 행동을 하는데 영향을 주며 이들 변수들간에도 영향관계가 있다는 모델을 제안하였고, 대안적으로 감정을 태도의 요소로 보는 모델과 신뢰가 감정이 전혀 관계가 없다는 모델을 제시하였다. 모델들을 비교한 결과 제안모델이 가장 우수하다고 판단할 수 있었다. 각 변수들의 경로계수에 의해 가설을 검증한 결과, 감정과 사용의 용이함은 유용성에 정적으로 유의하게 영향을 주었고 신뢰는 어느 정도 영향을 주었다. 그리고 신뢰와 사용의 용이함은 감정에도 유의하게 영향을 주었다. 그렇지만 사이트 사용의도에 유의하게 영향을 미치는 변수는 사용의 용이함 뿐이었다. 실증연구를 바탕으로, 온라인 상거래가 사용자 수용 측면에서 성공을 할 수 있기 위해서는 사용의 용이함과 함께 신뢰와 감정이 중요하게 고려되어야 함을 알 수 있다.

  • PDF

An Emotion Based Adaptive Agent Model using a Fuzzy Decision Method (퍼지 결정 방법을 이용한 감정 기반의 적응형 에이전트 모델)

  • 이의성;윤소정;오경환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.18-20
    • /
    • 2000
  • 에이전트를 다른 소프트웨어와 구별 시켜주는 요인들은 여러 가지가 있지만 그 중에서도 가장 큰 특징은 에이전트의 자율성, 적응성, 그리고 지능을 들 수 있다. 이러한 것을 가능하게 만들기 위해서는 행동 선택을 유발하는 모티브의 생성이 자동적으로 이루어져야 한다. 이러한 행동 선택에 있어서 자동적인 모티브를 제공해 주는 것이 감정이다. 감정은 그것을 가지고 있는 자율 시스템이 그 동안 겪어온 외부 환경과 내부 상태에 대한 글로벌 상태를 함축하고 있다. 그러므로, 접근 가능한 정보와 자원이 제한되어 있는 자율 시스템이 다중의 목표, 환경에서의 모호성과 다른 에이전트와의 조정 등을 하는데 있어서 감정 모델은 유용한 해결책을 제시해 줄 수 있다. 본 논문에서는 에이전트가 환경과 적응하면서 변화하는 에이전트의 내부 상태의 변화와 외부 사건에 대한 에이전트의 인식과 평가를 계속 반영하여 에이전트가 시스템 환경을 경험하면서 가질 수 있는 에이전트만의 시스템에 대한 광범위한 시야를 갖도록 감정 모델을 구축하는 것을 목적으로 한다. 또한 이렇게 생성된 감정 델을 통해서 에이전트에 특정 사건이 발생하였을 때 에이전트가 감정 모델에 기초하여 적절히 행동에 반응할 수 있는 적응적 에이전트 모델을 제시한다.

  • PDF