• 제목/요약/키워드: 감정인식

검색결과 914건 처리시간 0.037초

감성적 인간 로봇 상호작용을 위한 음성감정 인식 (Speech emotion recognition for affective human robot interaction)

  • 장광동;권오욱
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.555-558
    • /
    • 2006
  • 감정을 포함하고 있는 음성은 청자로 하여금 화자의 심리상태를 파악할 수 있게 하는 요소 중에 하나이다. 음성신호에 포함되어 있는 감정을 인식하여 사람과 로봇과의 원활한 감성적 상호작용을 위하여 특징을 추출하고 감정을 분류한 방법을 제시한다. 음성신호로부터 음향정보 및 운율정보인 기본 특징들을 추출하고 이로부터 계산된 통계치를 갖는 특징벡터를 입력으로 support vector machine (SVM) 기반의 패턴분류기를 사용하여 6가지의 감정- 화남(angry), 지루함(bored), 기쁨(happy), 중립(neutral), 슬픔(sad) 그리고 놀람(surprised)으로 분류한다. SVM에 의한 인식실험을 한 경우 51.4%의 인식률을 보였고 사람의 판단에 의한 경우는 60.4%의 인식률을 보였다. 또한 화자가 판단한 감정 데이터베이스의 감정들을 다수의 청자가 판단한 감정 상태로 변경한 입력을 SVM에 의해서 감정을 분류한 결과가 51.2% 정확도로 감정인식하기 위해 사용한 기본 특징들이 유효함을 알 수 있다.

  • PDF

실시간 동영상 스트리밍 환경에서 오디오 및 영상기반 감정인식 프레임워크 (Audio and Image based Emotion Recognition Framework on Real-time Video Streaming)

  • 방재훈;임호준;이승룡
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.1108-1111
    • /
    • 2017
  • 최근 감정인식 기술은 다양한 IoT 센서 디바이스의 등장으로 단일 소스기반의 감정인식 기술 연구에서 멀티모달 센서기반 감정인식 연구로 변화하고 있으며, 특히 오디오와 영상을 이용한 감정인식 기술의 연구가 활발하게 진행되는 있다. 기존의 오디오 및 영상기반 감정신 연구는 두 개의 센서 테이터를 동시에 입력 저장한 오픈 데이터베이스를 활용하여 다른 이벤트 처리 없이 각각의 데이터에서 특징을 추출하고 하나의 분류기를 통해 감정을 인식한다. 이러한 기법은 사람이 말하지 않는 구간, 얼굴이 보이지 않는 구간의 이벤트 정보처리에 대한 대처가 떨어지고 두 개의 정보를 종합하여 하나의 감정도 도출하는 디시전 레벨의 퓨저닝 연구가 부족하다. 본 논문에서는 이러한 문제를 해결하기 위해 오디오 및 영상에 내포되어 있는 이벤트 정보를 추출하고 오디오 및 영상 기반의 분리된 인지모듈을 통해 감정들을 인식하며, 도출된 감정들을 시간단위로 통합하여 디시전 퓨전하는 실시간 오디오 및 영상기반의 감정인식 프레임워크를 제안한다.

감정 상호작용 로봇을 위한 신뢰도 평가를 이용한 화자독립 감정인식 (Speech Emotion Recognition Using Confidence Level for Emotional Interaction Robot)

  • 김은호
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.755-759
    • /
    • 2009
  • 인간의 감정을 인식하는 기술은 인간-로봇 상호작용 분야의 중요한 연구주제 중 하나이다. 특히, 화자독립 감정인식은 음성감정인식의 상용화를 위해 꼭 필요한 중요한 이슈이다. 일반적으로, 화자독립 감정인식 시스템은 화자종속 시스템과 비교하여 감정특징 값들의 화자 그리고 성별에 따른 변화로 인하여 낮은 인식률을 보인다. 따라서 본 논문에서는 신뢰도 평가방법을 이용한 감정인식결과의 거절 방법을 사용하여 화자독립 감정인식 시스템을 일관되고 정확하게 구현할 수 있는 방법을 제시한다. 또한, 제안된 방법과 기존 방법의 비교를 통하여 제안된 방법의 효율성 및 가능성을 검증한다.

스마트폰환경에서 음성기반 감정인식 프레임워크 (Speech Emotion Recognition Framework on Smartphone Environment)

  • 방재훈;이승룡;정태충
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.254-256
    • /
    • 2013
  • 기존의 음성기반 감정인식 기술은 충분한 컴퓨팅 파워를 가진 PC에서 수백개의 특징을 사용하여 감정을 인식하고 있다. 이러한 음성기반 감정인식 기술은 컴퓨팅 파워에 제약이 많은 스마트폰 환경을 고려하지 않은 방법이다. 본 논문에서는 제한된 스마트폰 컴퓨팅 파워를 고려한 음성의 특징 추출 기법과 서버 클라이언트 개념을 도입한 효율적인 음성기반 감정인식 프레임워크를 제안한다.

프롬프트 레이블링을 이용한 적응형 음성기반 감정인식 프레임워크 (Adaptive Speech Emotion Recognition Framework Using Prompted Labeling Technique)

  • 방재훈;이승룡
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권2호
    • /
    • pp.160-165
    • /
    • 2015
  • 기존의 음성기반 감정인식 기술은 다양한 사용자로부터 수집된 데이터를 기반으로 범용적인 훈련 모델을 생성하고 이를 기반으로 감정을 인식한다. 이러한 음성기반 감정인식 모델링 기술은 개인 사용자의 음성특징을 정확히 고려하기 힘든 방법으로 개인마다 인식 정확도의 편차가 크다. 본 논문에서는 스마트폰 환경에서 프로프트 레이블링 기법을 활용하여 사용자에게 즉각적으로 감정을 피드백 받아 새로운 모델을 생성하여 적용하는 적응형 음성기반 감정인식 프레임워크를 제안한다. 실험을 통하여 제안하는 적응형 음성기반 감정인식 기법이 기존의 범용적인 모델을 사용하였을 때 보다 정확도가 크게 증가됨을 증명하였다.

엔터테인먼트 로봇을 위한 음성으로부터 감정 인식 및 표현 모듈 개발 (Development of Emotion Recognition and Expression module with Speech Signal for Entertainment Robot)

  • 문병현;양현창;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.82-85
    • /
    • 2007
  • 현재 가정을 비롯한 여러 분야에서 서비스 로봇(청소 로봇, 애완용 로봇, 멀티미디어 로봇 둥)의 사용이 증가하고 있는 시장상황을 보이고 있다. 개인용 서비스 로봇은 인간 친화적 특성을 가져야 그 선호도가 높아질 수 있는데 이를 위해서 사용자의 감정 인식 및 표현 기술은 필수적인 요소이다. 사람들의 감정 인식을 위해 많은 연구자들은 음성, 사람의 얼굴 표정, 생체신호, 제스쳐를 통해서 사람들의 감정 인식을 하고 있다. 특히, 음성을 인식하고 적용하는 것에 관한 연구가 활발히 진행되고 있다. 본 논문은 감정 인식 시스템을 두 가지 방법으로 제안하였다. 현재 많이 개발 되어지고 있는 음성인식 모듈을 사용하여 단어별 감정을 분류하여 감정 표현 시스템에 적용하는 것과 마이크로폰을 통해 습득된 음성신호로부터 특정들을 검출하여 Bayesian Learning(BL)을 적용시켜 normal, happy, sad, surprise, anger 등 5가지의 감정 상태로 패턴 분류를 한 후 이것을 동적 감정 표현 알고리즘의 입력값으로 하여 dynamic emotion space에 사람의 감정을 표현할 수 있는 ARM 플랫폼 기반의 음성 인식 및 감정 표현 시스템 제안한 것이다.

  • PDF

사용자의 성향 기반의 얼굴 표정을 통한 감정 인식률 향상을 위한 연구 (A study on the enhancement of emotion recognition through facial expression detection in user's tendency)

  • 이종식;신동희
    • 감성과학
    • /
    • 제17권1호
    • /
    • pp.53-62
    • /
    • 2014
  • 인간의 감정을 인식하는 기술은 많은 응용분야가 있음에도 불구하고 감정 인식의 어려움으로 인해 쉽게 해결되지 않는 문제로 남아 있다. 인간의 감정 은 크게 영상과 음성을 이용하여 인식이 가능하다. 감정 인식 기술은 영상을 기반으로 하는 방법과 음성을 이용하는 방법 그리고 두 가지를 모두 이용하는 방법으로 많은 연구가 진행 중에 있다. 이 중에 특히 인간의 감정을 가장 보편적으로 표현되는 방식이 얼굴 영상을 이용한 감정 인식 기법에 대한 연구가 활발히 진행 중이다. 그러나 지금까지 사용자의 환경과 이용자 적응에 따라 많은 차이와 오류를 접하게 된다. 본 논문에서는 감정인식률을 향상시키기 위해서는 이용자의 내면적 성향을 이해하고 분석하여 이에 따라 적절한 감정인식의 정확도에 도움을 주어서 감정인식률을 향상 시키는 메카니즘을 제안하였으며 본 연구는 이러한 이용자의 내면적 성향을 분석하여 감정 인식 시스템에 적용함으로 얼굴 표정에 따른 감정인식에 대한 오류를 줄이고 향상 시킬 수 있다. 특히 얼굴표정 미약한 이용자와 감정표현에 인색한 이용자에게 좀 더 향상된 감정인식률을 제공 할 수 있는 방법을 제안하였다.

Predicate Logic Form을 이용한 자연어 텍스트로부터의 감정인식 (Emotion Recognition from Natural Language Text Using Predicate Logic Form)

  • 설용수;김동주;김한우;박정기
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2010년도 제42차 하계학술발표논문집 18권2호
    • /
    • pp.411-412
    • /
    • 2010
  • 전통적으로 자연어 텍스트로부터의 감정인식 연구는 감정 키워드에 기반한다. 그러나 감정 키워드만을 이용하면 자연어 문장이 원래 갖고 있는 통사정보나 의미정보는 잃어버리게 된다. 이를 극복하기 위해 본 논문에서는 자연어 텍스트를 Predicate Logic 형태로 변환하여 감정 정보처리의 기반데이터로 사용한다. Predicate Logic형태로 변환하기 위해서 의존 문법 구문분석기를 사용하였다. 이렇게 생성된 Predicate 데이터 중 감정 정보를 갖고 있는 Predicate만을 찾아내는데 이를 위해 Emotional Predicate Dictionary를 구축하였고 이 사전에는 하나의 Predicate마다 미리 정의된 개념 클래스로 사상 시킬 수 있는 정보를 갖고 있다. 개념 클래스는 감정정보를 갖고 있는지, 어떤 감정인지, 어떤 상황에서 발생하는 감정인지에 대한 정보를 나타낸다. 자연어 텍스트가 Predicate으로 변환되고 다시 개념 클래스로 사상되고 나면 KBANN으로 구현된 Lazarus의 감정 생성 규칙에 적용시켜 최종적으로 인식된 감정을 판단한다. 실험을 통해 구현된 시스템이 인간이 인식한 감정과 약 70%이상 유사한 인식 결과를 나타냄을 보인다.

  • PDF

화행 정보를 활용한 문장에서의 감정 인식 (Emotion Recognition of Sentence by using Speech Act)

  • 김기태;류법모;최용석;이상태
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2009년도 춘계학술대회
    • /
    • pp.199-200
    • /
    • 2009
  • 자연스러운 대화가 가능한 인공지능 대화시스템을 구축하기 위해서는 사용자의 문장에 내재된 감정을 이해할 수 있는 시스템이어야만 한다. 또한 상호간의 대화를 통해서 풍겨지는 분위기를 파악할 수 있다면 사용자에게 마치 인간과 대화하는 듯한 자연스러움을 느끼도록 할 수 있을 것이다. 실제 대화에서 감정은 언어적인 표현뿐 아니라 비언어적인 표현으로도 표출되지만, 본 논문은 텍스트 상에서 언어적으로 표현되는 감정 정보를 인식하는데 초점을 둔다. 언어적인 표현으로 한정하여 감정을 인식하는 경우에는 감정을 직접 표현하고 있는 형용사나 동사가 중심이 된다. 본 논문에서는 형용사를 중심으로 하여 화행 정보와 결합하여 감정을 인식하는 시스템에 대해서 제시하고자 한다. 이 논문은 문장에 내재되어 있는 숨겨진 감정이나 분위기 등을 파악하기 위한 연구에 대한 선행 연구로서 텍스트 상에서 직접 드러나는 감정을 인식하기 위한 방법을 제안한다.

  • PDF

생체신호 분석과 K-Means 분류 알고리즘을 이용한 감정 인식 (Emotion Recognition using Bio-signal Measurements & K-Means Classifier)

  • 차상훈;김성재;김다영;김광백;윤상석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.386-388
    • /
    • 2018
  • 본 논문은 사회적 상호작용 결여로 감정 기복이 심하고 스트레스로 인해 정서불안 증세를 보이는 자폐 범주성 장애아동의 감정 상태를 인식하기 위한 목적으로 4가지 감정 자극에 대하여 생체신호를 분석하고 K-Means 알고리즘을 적용하여 획득한 정보로부터 감정 상태를 인식하는 방법을 제안한다. 실험구성은 참가자가 주어지는 감정자극 영상을 시청하는 동안 맥파 및 피부전도 센서를 이용하여 생체신호를 측정한 후 자율신경 비율을 나타내는 LF/HF의 심박 정보와 피부 반응 정보를 정량적으로 분석하였고, 추출된 정보로부터 K-Means 알고리즘을 적용하여 감정 상태를 분류하는 과정으로 진행된다. 총 3명의 일반인을 대상으로 실험을 진행하였으며, 4가지 감정 자극에 대한 실험을 수행한 결과, 생체신호 측정을 이용한 감정인식 방법이 제시되는 감정 자극을 충분히 분류할 수 있음을 확인할 수 있었다.

  • PDF