• Title/Summary/Keyword: 감쇠 효과

Search Result 632, Processing Time 0.027 seconds

Structural Damping Effects on Stability of a Cantilever Column under Sub-tangentially Follower Force (종동력을 받는 외팔기둥의 동적 안정성에 미치는 구조감쇠 효과)

  • Min, Dong-Ju;Park, Jae-gyun;Kim, Moon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.635-643
    • /
    • 2016
  • A stability theory of a damped cantilever column under sub-tangential follower forces is first summarized based on the stability map. It is then demonstrated that internal and external damping can be exactly transformed to Rayleigh damping so that the damping coefficients can be effectively determined using proportional damping. Particularly a parametric study with variation of damping coefficients is performed in association with flutter loads of Beck's column and it is shown that two damping coefficients can be correctly estimated for real systems under the assumption of Rayleigh damping. Finally a frequency equation of a cantilever beam subjected to both a sub-tangentially follower force and two kinds of damping forces is presented in the closed-form and its stability maps are constructed and compared with FE solutions in the practical range of damping coefficients.

Geoacoustic Modeling for Analysis of Attenuation Characteristics using Chirp Acoustic Profiling data (광역주파수 음향반사자료의 감쇠특성 분석을 위한 지질음향모델링 기법 연구)

  • Chang Jae-Kyeong;Yang Sung-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.202-208
    • /
    • 1999
  • We introduce a new acoustic parameter for the classification of seafloor sediments from chirp sonar acoustic profiling data. The acoustic parameter is defined as a derivative of the unwrapped phase of the Fourier transform of acoustic profiling data. Consequently, it represents the characteristics of attenuation by dissipative dispersion in sediments. And we estimated acoustic properties by geoacoustic modeling using Chirp data obtained from the different sedimentary facies. Our classification results, when compared with the results of analysis of sampled sediments, show that the acoustic parameter discriminates sedimentary facies and bottom hardness. Thus the method in this paper is expected to be an effective means of geoacoustic modeling of the seafloor.

  • PDF

Damping Characteristics of a Helmholtz Resonator Under the Flow Area (튜브(모사 챔버)내의 유동특성이 음향공 감쇠 능력에 미치는 영향)

  • Song, Jae-Gang;Kim, Young-Mun;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.82-85
    • /
    • 2008
  • A Helmholtz resonator is applied to control high frequency combustion instability in liquid rocket engine. Damping characteristics of the Helmholtz resonator are investigated by the flow characteristic and its design. To simulate combustion instability, resonance in a test section(with fixed volume) is made by a pressure pulsator, and then damping characteristics are investigated. Its orifice length and diameter are selected as the design parameters and flow rates are varied to reveal the effect on damping characteristics. The experimental results show that a Helmholtz resonator is also working with flows. When length and diameter of an orifice are small, the tuning frequency increases as the flow velocity increases.

  • PDF

New Dynamic Model of Large-Scale 20-Ton MR Fluid Damper (대용량 20톤 MR 유체 감쇠기의 새로운 동적 모델)

  • ;;Yang, Guangqiang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.141-148
    • /
    • 2002
  • MR 유체 감쇠기는 구조물의 진동을 감소시키기 위한 가장 유망하고 새로운 제진 (制振) 장치 중 하나이다. 이 장치는 기계적인 단순성, 높은 동적 범위, 적은 전력 요구량, 커다란 감쇠 능력, 강인성 등의 장점을 가지고 있기 때문에, 토목 구조 시스템의 내진(耐震) 및 내풍(耐風) 성능을 향상시키는데 매우 유용하다. 많은 연구자들이 MR 유체 감쇠기의 유사-정적 모델을 연구했지만 그 모델이 감쇠기의 설계를 위해서는 유용하다고 하더라도, 동적 하중에 대한 감쇠기의 거동을 모사하는 데는 충분하지 않다. 논문에서는 대용량 20톤 MR 유체 감쇠기의 동적하중에 대한 응답 해석 결과를 이용하여, Bouc-Wen 모델을 기반으로 하는 새로운 역학적 모델을 제안하였다. 이 모델은 MR 유체의 stiction현상과 관성 및 shear thinning 효과를 잘 묘사한다. 또한, 제안된 MR 유체 감쇠기의 동적 모델이 실험 결과와 매우 잘 일치함을 보였다.

  • PDF

A Numerical Study on Acoustic Behavior in Combustion Chamber with Acoustic Cavity (음향공이 장착된 로켓엔진 연소실의 음향장 해석)

  • Sohn, Chae-Hoon;Kim, Young-Mog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.28-37
    • /
    • 2002
  • Acoustic behavior in combustion chamber with acoustoc cavity is numerically investigated by adopting linear acoustic analysis. Helmholtz-type resonator is employed as a cavity model to suppress acoustic instability passively. The tuning frequency of acoustic cavity is adjusted by varying the sound speed in acoustic cavity. Through harmonic analysis, acoustic pressure responses of chamber to acoustic oscillating excitation are shown and the resonant acoustic modes are identified. Acoustic damping effect of acoustic cavity is quantified by damping factor. As the tuning frequency approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby damping effect is degraded significantly. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic cavity tuned to maximum frequency of those of the possible splitted upper modes.

A Numerical Study on Bituning of Acoustic Resonator in a Combustion Chamber of Liquid Rocket Engine (로켓엔진 연소기에서 음향 공명기의 bituning에 관한 수치적 연구)

  • Lee Su-Ryong;Sohn Chae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • A linear acoustic analysis is conducted to examine bituning of acoustic resonators for acoustic damping in a combustion chamber of liquid rocket engine. Bituned resonators are tuned to the two principal modes, the first tangential(1T) and the first radial(1R) modes. First, the acoustic-damping effect of monotuned resonators is investigated. The damping capacity is quantified by damping factor as a function of the number of the resonators monotuned to 1T or 1R mode. Next, the damping characteristics of the bituned resonators are investigated. From the numerical data, the number of resonators, to be tuned to 1T and 1R modes, respectively, can be selected properly. Furthermore, the concept of resonator bituning is applied to reduce the degradation of damping effect caused by the mode split and thereby, optimal bituning frequencies are found.

Effect of Gas-Liquid Scheme Injector on Acoustic Damping in Liquid Rocket Engine (액체 로켓엔진 분사기의 음향감쇠 효과에 관한 수치적 연구)

  • Park, I-Sun;Sohn, Chae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.79-86
    • /
    • 2005
  • The role of the injector as an acoustic resonator is studied for the high performance rocket engine adopting the gas-liquid scheme injector. Acoustic behavior in the combustor with single injector is investigated numerically adopting linear acoustic analysis for cold condition. Acoustic-damping effect of the injector is evaluated by damping factor as a function of the injector length. From the numerical results, it is found that the injector can play a significant role in acoustic damping and the optimum length of the injector corresponds to half of a full wavelength of the longitudinal mode with the acoustic frequency to be damped in the chamber. In baffled chamber, the optimum lengths of the injector are calculated as a function of baffle length for both cold and hot conditions.

Numerical Study on Bituning of Acoustic Resonator in a Combustion Chamber of Liquid Rocket Engine (로켓엔진 연소실에 장착된 음향 공명기의 bituning에 관한 수치적 연구)

  • Sohn Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.355-358
    • /
    • 2006
  • A linear acoustic analysis is conducted to examine bituning of acoustic resonators for acoustic damping in a combustion chamber of liquid rocket engine. Bituned resonators are tuned to the two principal modes, the first tangential(1T) and the first radial(1R) modes. First, the acoustic-damping effect of monotuned resonators is investigated. The damping capacity is quantified by damping factor as a function of the number of the resonators monotuned to 1T or 1R mode. Next, the damping characteristics of the bituned resonators are investigated. From the numerical data, the number of resonators, to be tuned to 1T and 1R modes, respectively, can be selected properly.

  • PDF

Seismic Fragility Functions of a SDOF Nonlinear System with an Energy Dissipation Device (에너지 소산형 감쇠기가 설치된 단자유도 비선형 시스템의 지진취약도 함수)

  • Park, Ji-Hun;Yun, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 2012
  • Seismic fragility functions are derived for probabilistic evaluation of seismic control performance of energy dissipation devices installed in reinforced concrete structures. Displacement-dependent dampers are added to the nonlinear single-degree-of-freedom systems with different natural periods and hysteretic characteristics of which stiffness and strength has uncertainty. Nonlinear time history analysis is conducted for those SDOF systems and the result is processed statistically to obtain seismic fragility functions in the form of log normal distribution. Variation of seismic fragility functions for different parameters of SDOF systems and dampers are investigated and the seismic control performance is assessed probabilistically.

A Numerical Analysis of Acoustic Behavior in Combustion Chamber with Acoustic Cavity (음향공이 장착된 로켓엔진 연소실의 음향장 수치해석)

  • 손채훈;김영목
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.249-252
    • /
    • 2003
  • Acoustic behavior in combustion chamber with acoustic cavity is numerically investigated by adopting linear acoustic analysis. Helmholtz-type resonator is employed as a cavity model to suppress acoustic instability. The tuning frequency of acoustic cavity is adjusted by varying the sound speed in acoustic cavity. Acoustic pressure responses of chamber to acoustic oscillating excitation are shown md acoustic damping effect of acoustic cavity is quantified by damping factor. As the tuning frequency approaches the target frequency of the resonant mode, mode split from the original resonant mode to lower and upper modes appears and thereby damping effect is degraded. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic cavity tuned to maximum frequency of those of the possible splitted upper modes.

  • PDF