On movie review sites, movie ratings are determined by netizens' subjective judgement. This means that inconsistency between ratings and opinions from netizens often occurs. To solve this problem, this paper proposes sentiment sentence sets which affect movie evaluation, and apply sets to comments to infer ratings. Creation of sentiment sentence sets is consisted of two stages, construction of sentiment word dictionary and creation of sentiment sentences for sentiment estimation. Sentiment word dictionary contains sentimental words and its polarities included in reviews. Elements of sentiment sentences are combined with movie related noun and predicate from words sentiment word dictionary. In this study, to make correspondence between polarity of sentiment sentence and sentiment word dictionary, sentiment sentences which have different polarity with sentiment word dictionary are removed. The scores of comments are calculated by applying averages of sentiment sentences elements. The result of experiment shows that sentence scores from sentiment sentence sets are closer to reflect real opinion of comments than ratings by netizens'.
Kim, Hong-Jin;Kim, Dam-Rin;Kim, Bo-Eun;Oh, Shin-Hyeok;Kim, Hark-Soo
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.313-316
/
2020
감성 분석은 문장의 감성을 분석해 긍정 또는 부정으로 분류하는 작업을 의미한다. 문장에 담긴 감성을 파악해야 하기 때문에 문장 전체를 이해하는 것이 중요하다. 그러나 한 문장에 긍정과 부정의 이중 극성이 동존하는 문장은 감성 분석에 혼동이 생길 수 있다. 본 논문에서는 이와 같은 문제를 해결하기 위해 단어의 감성 점수 예측을 통해 감성 단어 등장 순서를 고려한 감성 분석 모델을 제안한다. 또한 최근 다양한 자연어 처리 분야에서 좋은 성능을 보이는 사전 학습 언어 모델을 활용한다. 실험 결과 감성 분석 정확도 90.81%로 기존 모델들에 비해 가장 좋은 성능을 보였다.
Kim, Min;Byun, Jeunghyun;Lee, Chunghee;Lee, Yeonsoo
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.79-83
/
2018
본 논문은 한국어 문장의 형태소, 음절, 자소를 동시에 각자 다른 합성곱층을 통과시켜 문장의 감성을 분류하는 Multi-channel CNN을 제안한다. 오타를 포함하는 구어체 문장들의 경우에 형태소 기반 CNN으로 추출 할 수 없는 특징들을 음절이나 자소에서 추출 할 수 있다. 한국어 감성분석에 형태소 기반 CNN이 많이 쓰이지만, 본 논문의 Multi-channel CNN 모델은 형태소, 음절, 자소를 동시에 고려하여 더 정확하게 문장의 감성을 분류한다. 본 논문이 제안하는 모델이 형태소 기반 CNN보다 야구 댓글 데이터에서는 약 4.8%, 영화 리뷰 데이터에서는 약 1.3% 더 정확하게 문장의 감성을 분류하였다.
본 연구는 MUSE 감성 코퍼스를 활용하여 문장의 극성과 키워드의 극성이 얼마만큼 일치하고 일치하지 않은지를 분석함으로써 특히 문장의 극성과 키워드의 극성이 불일치하는 유형에 대한 연구의 필요성을 역설하고자 한다. 본 연구를 위하여 DICORA에서 구축한 MUSE 감성주석코퍼스 가운데 IT 리뷰글 도메인으로부터 긍정 1,257문장, 부정 1,935문장을, 맛집 리뷰글 도메인으로부터는 긍정 2,418문장, 부정 432문장을 추출하였다. UNITEX를 이용하여 LGG를 구축한 후 이를 위의 코퍼스에 적용하여 나타난 양상을 살펴본 결과, 긍 부정 문장에서 반대 극성의 키워드가 실현된 경우는 두 도메인에서 약 4~16%의 비율로 나타났으며, 단일 키워드가 아닌 구나 문장 차원으로 극성이 표현된 경우는 두 도메인에서 약 25~40%의 비교적 높은 비율로 나타났음을 확인하였다. 이를 통해 키워드의 극성에 의존하기 보다는 문장과 키워드의 극성이 일치하지 않는 경우들, 가령 문장 전체의 극성을 전환시키는 극성전환장치(PSD)가 실현된 유형이나 문장 내 극성 어휘가 존재하지 않지만 구 또는 문장 차원의 극성이 표현되는 유형들에 대한 유의미한 연구가 수행되어야 비로소 신뢰할만한 오피니언 자동 분류 시스템의 구현이 가능하다는 것을 알 수 있다.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.195-200
/
2016
본 연구는 MUSE 감성 코퍼스를 활용하여 문장의 극성과 키워드의 극성이 얼마만큼 일치하고 일치하지 않은지를 분석함으로써 특히 문장의 극성과 키워드의 극성이 불일치하는 유형에 대한 연구의 필요성을 역설하고자 한다. 본 연구를 위하여 DICORA에서 구축한 MUSE 감성주석코퍼스 가운데 IT 리뷰글 도메인으로부터 긍정 1,257문장, 부정 1,935문장을, 맛집 리뷰글 도메인으로부터는 긍정 2,418문장, 부정 432문장을 추출하였다. UNITEX를 이용하여 LGG를 구축한 후 이를 위의 코퍼스에 적용하여 나타난 양상을 살펴 본 결과, 긍 부정 문장에서 반대 극성의 키워드가 실현된 경우는 두 도메인에서 약 4~16%의 비율로 나타났으며, 단일 키워드가 아닌 구나 문장 차원으로 극성이 표현된 경우는 두 도메인에서 약 25~40%의 비교적 높은 비율로 나타났음을 확인하였다. 이를 통해 키워드의 극성에 의존하기 보다는 문장과 키워드의 극성이 일치하지 않는 경우들, 가령 문장 전체의 극성을 전환시키는 극성전환장치(PSD)가 실현된 유형이나 문장 내 극성 어휘가 존재하지 않지만 구 또는 문장 차원의 극성이 표현되는 유형들에 대한 유의미한 연구가 수행되어야 비로소 신뢰할만한 오피니언 자동 분류 시스템의 구현이 가능하다는 것을 알 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.447-450
/
2019
본 논문은 한국어 문장의 감성 분류를 위해 문장의 형태소, 음절, 자소를 입력으로 하는 합성곱층과 DenseNet 을 적용한 Text Multi-channel DenseNet 모델을 제안한다. 맞춤법 오류, 음소나 음절의 축약과 탈락, 은어나 비속어의 남용, 의태어 사용 등 문법적 규칙에 어긋나는 다양한 표현으로 인해 단어 기반 CNN 으로 추출 할 수 없는 특징들을 음절이나 자소에서 추출 할 수 있다. 한국어 감성분석에 형태소 기반 CNN 이 많이 쓰이고 있으나, 본 논문에서 제안한 Text Multi-channel DenseNet 모델은 형태소, 음절, 자소를 동시에 고려하고, DenseNet 에 정보를 밀집 전달하여 문장의 감성 분류의 정확도를 개선하였다. 네이버 영화 리뷰 데이터를 대상으로 실험한 결과 제안 모델은 85.96%의 정확도를 보여 Multi-channel CNN 에 비해 1.45% 더 정확하게 문장의 감성을 분류하였다.
KIPS Transactions on Software and Data Engineering
/
v.8
no.6
/
pp.257-264
/
2019
Recently, deep neural network based approaches have shown a good performance for various fields of natural language processing. A huge amount of training data is essential for building a deep neural network model. However, collecting a large size of training data is a costly and time-consuming job. A data augmentation is one of the solutions to this problem. The data augmentation of text data is more difficult than that of image data because texts consist of tokens with discrete values. Generative adversarial networks (GANs) are widely used for image generation. In this work, we generate sentimental texts by using one of the GANs, CS-GAN model that has a discriminator as well as a classifier. We evaluate the usefulness of generated sentimental texts according to various measurements. CS-GAN model not only can generate texts with more diversity but also can improve the performance of its classifier.
본 논문에서는 언어장애인용 문장발생장치의 통신율을 증진시키기 위한 처리방안으로 신경망을 이용하여 문장발생장치에 동사예측을 적용하는 방법을 제안하였다. 각 단어들은 구문론과 의미론에 따른 정보벡터로 표현되며, 언어처리는 전통적으로 사전을 포함하는 것과는 달리, 상태공간에서 다양한 영역으로 분류되어 개념적으로 유사한 단어는 상태공간에서의 위치를 통하여 알게 된다. 사용자가 심볼을 누르면 심볼에 해당하는 단어는 상태공간에서의 위치를 찾아가며, 신경망 학습을 통해 동사를 예측하였고 그 결과 제한된 공간 내에서 약 20% 통신율 증진을 가져올 수 있었다.
KIPS Transactions on Software and Data Engineering
/
v.5
no.8
/
pp.377-384
/
2016
Our goal is to build the system which collects tweets from Twitter, analyzes the sentiment of each tweet, and helps users build a sentiment tagged corpus semi-automatically. After collecting tweets with the Twitter API, we analyzes the sentiments of them with a sentiment dictionary. With the proposed system, users can verify the results of the system and can insert new sentimental words or dependency relations where sentiment information exist. Sentiment information is tagged with the JSON structure which is useful for building or accessing the corpus. With a test set, the system shows about 76% on the accuracy in analysing the sentiments of sentences as positive, neutral, or negative.
Journal of Korea Society of Industrial Information Systems
/
v.27
no.1
/
pp.49-62
/
2022
Online customer review data can be easily collected on the Internet and also they describe sentimental evaluation of a product in different aspects. Previous sentiment analysis studies evaluate the degree of sentiment with review data, which may have multiple sentences describing different product aspects. Since different aspects of a product can be described in a sentence, the proposed method suggested analyzing a sentence to build a pair of a product aspect terms and sentimental terms. Bidirectional LSTM and CRF algorithms were used in this paper. A pair of aspect terms and sentimental terms are evaluated by pre-defined evaluation rules. The paper suggested using the result of evaulation as inputs of QFD, so that the quantified customer voices effect on the requirements of a new product. Online reviews for a hair dryer were used as an example showing that the proposed approach can derive reasonable sentiment analysis results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.