The Journal of the Institute of Internet, Broadcasting and Communication
/
v.20
no.4
/
pp.107-113
/
2020
A number of studies have been conducted on predicting software faults, but most of them have been supervised models using labeled data as training data. Very few studies have been conducted on unsupervised models using only unlabeled data or semi-supervised models using enough unlabeled data and few labeled data. In this paper, we produced new semi-supervised models using tree algorithms in the self-training technique. As a result of the model performance evaluation experiment, the newly created tree models performed better than the existing models, and CollectiveWoods, in particular, outperformed other models. In addition, it showed very stable performance even in the case with very few labeled data.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.3
/
pp.127-133
/
2019
Most studies of software fault prediction have been about supervised learning models that use only labeled training data. Although supervised learning usually shows high prediction performance, most development groups do not have sufficient labeled data. Unsupervised learning models that use only unlabeled data for training are difficult to build and show poor performance. Semi-supervised learning models that use both labeled data and unlabeled data can solve these problems. Self-training technique requires the fewest assumptions and constraints among semi-supervised techniques. In this paper, we implemented several models using self-training algorithms and evaluated them using Accuracy and AUC. As a result, YATSI showed the best performance.
Our study examines the relationship between coach turnover and professional sport team performance using the evidences of Korean professional soccer teams. We collected panel dataset of 304 team-year observations and 96 coaches from Korean professional soccer league during the period of 1983-2013. Among them, our final sample is comprised of 226 observations and 81 coaches manifested for fixed-effect generalized least square (GLS) regression analysis. Drawing on sport management literatures and organizational learning theory, we argue that it takes time for a new head coach to take charge of the team in which the new leader who secure more time to interact with organization members is better able to remodel and improve team performance. Our empirical findings reveal that off-season coach turnover has a positive impact while turnover during the season has its negative influences on team performance. In addition, we find that subsequent team performance in association of off-season coach turnover is comparably better than that of on-season succession. The results show that coach succession rendered from inside the professional soccer team mediates the relationship between coach turnover and team performance. Our findings imply that coach turnover in professional sport teams is a significant factor affecting team performance.
벤처기업 CEO의 본질적 역량과 역할은 조직의 자원을 얼마나 효율적으로 운영하는가에 따라 관리자로서 조직성과에 큰 영향을 미친다. 이러한 중요성에도 불구하고 CEO 역량 수준이 조직이 내재하는 자원에 미치는 영향에 대한 이론적 고찰과 CEO의 역량 수준과 조직성과 간의 관계가 조직 구성원의 역량에 따라서 어떻게 달라지는가에 관한 실증연구는 매우 부족한 실정이다. 기존 선행연구의 한계점을 보완하기 위해 본 연구에서는 자원기반이론(resource-based view of the firm)을 바탕으로 프로스포츠 산업에서의 조직 구성원의 역량에 따른 관리자의 감독역할에 대해 실증적으로 분석하였다. 구체적으로, 본 연구에서는 기존의 스포츠 기업가정신(sport entrepreneurship) 연구 분야의 이론을 경영전략의 자원기반관점과 융합하여 벤처기업 CEO와 프로스포츠 감독의 역할이 조직구조와 성과 메커니즘의 측면에서 매우 흡사하며 조직의 자원을 효율적으로 운영하고 성과를 도출하는 측면에서 모두 기업가(entrepreneur)적 특성을 반드시 내재해야 한다고 본다. 이러한 맥락에서 프로스포츠팀에서의 관리자로서의 감독 역량과 조직성과 간의 관계에서 조직의 자원 효율성의 매개효과와 조직 구성원 역량에 대한 조절효과를 설명하고자 한다. 미국프로농구(NBA) 30개 구단과 한국프로농구(KBL) 10개 구단의 9개 시즌(2013~2014시즌 - 2021~2022시즌)의 감독과 팀 데이터를 실증분석에 있어 프로세스 매크로 58 모형을 적용하여 본 연구의 가설을 검증하였다. 실증분석 결과, 미국프로농구과 한국프로농구 데이터 모두에서 (1) 프로농구팀의 자원 효율성은 감독의 역량과 승률 간의 정(+)의 관계를 매개하고, (2) 조직 구성원의 역량은 농구팀의 자원 효율성을 통한 감독 역량이 승률에 미치는 간접효과를 조절(p<.05) 하는 것으로 나타났다. 본 연구는 비교적 객관적으로 조직의 성과측정이 가능한 프로스포츠 데이터를 활용하여 프로스포츠 산업에서 벤처기업의 CEO와 유사한 기업가적 역할을 수반해야 하는 감독 및 조직 구성원의 역량이 조직의 성과에 미치는 영향을 실증분석하는 한편 스포츠 애널리틱스(sport analytics) 분야와 경영학 연구를 융합하였다는 의의가 있다.
KIPS Transactions on Software and Data Engineering
/
v.3
no.2
/
pp.57-64
/
2014
Most previous studies of software fault prediction model which determines the fault-proneness of input modules have focused on supervised learning model using training data set. However, Unsupervised learning model is needed in case supervised learning model cannot be applied: either past training data set is not present or even though there exists data set, current project type is changed. Building an unsupervised learning model is extremely difficult that is why only a few studies exist. In this paper, we build unsupervised models using representative clustering algorithms, EM and DBSCAN, that have not been used in prior studies and compare these models with the previous model using K-means algorithm. The results of our study show that the EM model performs slightly better than the K-means model in terms of error rate and these two models significantly outperform the DBSCAN model.
현행 국내 항공안전감독 업무 및 시스템의 인허가 AOC(Air Operator Certificate) 관련 정보 확인 기능 부재, 연 월간 감독계획 간의 연계성 취약, 점검 데이터 활용 통계 및 분석 기반 취약, 점검 및 인허가 대상별 인허가 점검 관련 데이터 관리 기반 미흡, 제한적 시스템 기능 구현에 따른 상당 업무기능의 수작업 문서처리 등의 한계점을 파악하고 이를 개선하기 위한 대안으로 위험관리(Risk Management) 기법을 활용한 항공안전감독 업무절차 및 현행 운영 시스템의 개선모형을 도출하고 이를 적용한 운영체계의 구현 방향성을 제시하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.945-947
/
2013
입력 모듈의 결함경향성을 결정하는 결함 예측 모델 연구들은 대부분 훈련 데이터 집합을 사용하는 감독형 모델에 관련된 것들이었다. 하지만 과거 데이터 집합이 없거나 현재 프로젝트 성격이 다른 경우는 비감독형 모델이 필요하며, 이들에 관한 연구들은 모델 구축의 어려움 때문에 극소수 존재한다. 본 논문에서는 대표적인 클러스터링 알고리즘들을 사용한 비감독형 모델들을 제작하여, 기존 모델들이 많이 사용한 K-means 모델과 나머지 모델들의 성능을 비교하였다.
The choice of labeled data in semi-supervised learning algorithm can result in effects on the performance of the resultant classifier. In order to select labeled data required for the training of a semi-supervised learning algorithm, VCNN(Vector Centroid Neural Network) is proposed in this paper. The proposed selection method of label data is evaluated on UCI dataset and caltech dataset. Experiments and results show that the proposed selection method outperforms conventional methods in terms of classification accuracy and minimum error rate.
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.637-639
/
2021
인공지능 기반의 생활폐기물의 인식 및 선별에서, 선별 정확도의 저하는 인식 대상의 형태적 다양성과 학습데이터 부족 및 불균등성에 기인한다. 본 연구에서는 비전 인공지능 기반의 효과적인 폐기물 선별을 위한 인식 시스템 및 감독학습 기반의 인공지능 학습 기법을 제안한다. 생활폐기물 중 순환자원적 가치가 높은 CAN, PET, 그리고 이와 형상적으로 유사한 폐기물에 대해 본 연구에서 제안된 시스템에서 물체원형 및 훼손된 형태의 총 18 종 이미지 데이터를 대상으로, 감독학습기반의 인공지능 모델 제작에서 최적의 데이터 레이블링을 위한 분류체계를 제시한다.
Relation extraction is an important information extraction technique that can be widely used in areas such as question-answering and knowledge population. Previous studies on relation extraction have been based on supervised machine learning models that need a large amount of training data manually annotated with relation categories. Recently, to reduce the manual annotation efforts for constructing training data, distant supervision methods have been proposed. However, these methods suffer from a drawback: it is difficult to use these methods for collecting negative training data that are necessary for resolving classification problems. To overcome this drawback, we propose a one-class classification model that can be trained without using negative data. The proposed model determines whether an input data item is included in an inner category by using a similarity measure based on lexical information and syntactic patterns in a vector space. In the experiments conducted in this study, the proposed model showed higher performance (an F1-score of 0.6509 and an accuracy of 0.6833) than a representative one-class classification model, one-class SVM(Support Vector Machine).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.