• Title/Summary/Keyword: 감가속도 특성

Search Result 8, Processing Time 0.019 seconds

Effect of the Main Structure Stiffness on the Frontal Collision Behavior (차체 추요 부재의 강성이 정면 충돌 거동에 미치는 영향)

  • Kim, Chon-Wook;Han, Byoung-Kee;Kim, Jong-Chan;Jung, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.234-241
    • /
    • 2002
  • In this study, the car crash analysis that simulates the crushing behavior of car forestructure during a frontal impact is carried out. The analysis model for front impact of a car consists of the lumped mass and the spring model. The characteristics value of masses and springs is obtained from the static analysis of a target car. The deceleration-time curve obtained from the simulation are compared with NCAP test data from the NHTSA. They show a good agreement with frontal crash test data. The deceleration-time curve of passenger compartment is classified into 3 stages; beginning stage, middle stage, and last stage. And the behavior of masses at each stage is explained. The effect of stiffness variation on deceleration of passenger compartment is resolved. The maximum loaded peak-time of torque box and dash is the main factor to control the passenger compartment's maximum deceleration.

Numerical Investigation for Multi-layer Shock Absorber to Improve Survivability of Fuze at High Impact (고충격에 신관의 생존성을 향상시키기 위한 다층 충격완충장치 전산해석 연구)

  • Soh, Kyoung Jae;Kim, Minkyum;Lee, Daehee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.255-261
    • /
    • 2020
  • This study proposes a method of constructing an effective shock absorber. The existing shock absorber is fabricated only with polyethylene; however, the new shock absorber comprises polyethylene on the outside and a high-density material on the inside. The shock was mostly reduced when the density difference between the inner and outer materials was large. Aluminum, titanium, and copper were chosen as the outer structure of two-layer. Shock reduction was most effective in copper with the highest density, and the maximum deceleration was reduced by 43% while the impulse was reduced by 51% in the proposed shock absorber than the traditional shock absorber. In the cases of four-layer and six-layer shock absorbers, the impulse was reduced, but the maximum deceleration was increased. The fuze must survive from the biggest shock and the remaining shock waves should not exceed the threshold. Thus, a two-layer structure shock absorber using polyethylene-copper was proposed.

A study on the characteristics of automotive brake pedal force (자동차 제동장치의 답력특성에 관한 연구)

  • 김형대;임윤철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.64-75
    • /
    • 1993
  • In this study, the function of a hydraulic brake system with a vacuum booster is systematically analyzed according to the mutual relations which follow : - the brake pedal force vs. booster cylinder input force - the booster output force vs. master cylinder input force - the hydraulic line pressure vs. braking deceleration. A computer program is developed based on the theory which is able to predict and analyze the pedal force characteristics at the beginning of the initial stage of brake system design. Analytical results show good agreement with the experimental vehicle test.

  • PDF

차량 종적 제어시스템 소개

  • 유송민
    • Journal of the KSME
    • /
    • v.32 no.10
    • /
    • pp.867-875
    • /
    • 1992
  • 차량종적제어시스템을 이용한 운행장치에서 측정센서에 의하여 감지되는 정보량에 따른 응답특 성은 다음과 같다. 1) 종적제어시스템(longitudinal control system)을 이용하여 소대를 형성하는 과정에서 순차형 태로 정보를 전달할 때는 거리만을 이용하는 경우보다 거리 및 접근속도를 모두 사용하는 것이 훨씬 안정된 소대의 형성을 나타내었다. 2) 제어장치에서 제어상수의 선정에 따라 구분되는 세 가지의 영역이 정의되었다. 쾌적한 운행의 판단은 빠른 주기로 변화하는 응답특성이 나타나는지의 여부로 결정할 수가 있다. 즉 빠른 주 기로 감가속을 변화시켜야 할 경우에는 안락한 승차감을 기대할 수 없다.

  • PDF

Development of a Finite Element Model for Frontal Crash Analysis of a Large-Sized Truck (대형트럭의 정면 충돌 특성해석을 위한 유한요소모델의 개발)

  • Kim, Hak-Duck;Song, Ju-Hyun;Oh, Chae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.489-494
    • /
    • 2001
  • This paper develops a finite element model for frontal crash analysis of a large-sized truck. It is composed of 220 parts, 70,041 nodes and 69,073 elements. This paper explains only major parts' models in detail such as frame, cab, floor, and bumper which affect on crash analysis a lot. In order to prevent penetration not only at a part itself but also between parts, all contact areas are defined using type-36, self-impact type. The developed model's reliability is validated by comparing simulation and crash test results. The results used for model validation are vehicle pulses at B-pillar, and frame and deformation of frame and cab. The frontal crash simulation is performed with the same conditions as crash test. And, it is performed using PAM-CRASH installed in super-computer SP2. The developed model whose reliability is verified may be used as a base to develop a finite element model for occupant behavior and injury coefficient analysis.

  • PDF

Comparison between Congestion Levels and Amount of $CO_2$ Emissions on Arterials (단속류 간선도로에서 지정체와 $CO_2$ 배출량 비교)

  • Gang, Jin-Gu;O, Heung-Un
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.17-23
    • /
    • 2011
  • It has been presumed that the amount of vehicle's $CO_2$ emission would highly related to vehicle's cruising speeds on highways. In this study, it was tested if vehicle's $CO_2$ emissions would relate to the types of highways and the level of congestion. The results showed that the amount of $CO_2$ emission changes depending on (1) the vehicles' cruising speeds (b) congestion levels, and (c) the types of intersections. It was found that the vehicle acceleration and deceleration methods increases the amount of $CO_2$ emission up to 12%. It was also found that it changed up to 30% and 40% depending on the level of congestion and the types of intersections, respectively. The findings imply that the amount of $CO_2$ emission from vehicles should be improved when vehicles' cruising speeds are well managed through congestion management.

Analysis of golf swing motion for specific properties of club shaft (클럽 샤프트(Club Shaft) 특성에 따른 골프 스윙(Golf Swing)동작 분석)

  • Kim, Sung-Il;Kim, Ky-Hyoung;Kim, Hyung-Soo;Lee, Hyun-Seob;Kim, Jin-Uk;Ahn, Chan-Gyu;Kim, Hee-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.17-32
    • /
    • 2002
  • The purpose of this study was to find the rational method to analyze golf swing with specific property of club shaft. Three subjects were filmed by two high speed digital cameras with 500 fps. The phase analyzed was downswing of each subject. The three-dimensional coordinates of the anatomical landmarks were obtained with motion analysis system Kwon3d 3.0 version and smoothed by lowpass digital filter with cutoff frequency 6Hz. From these data, kinematic and kinetic variables were calculated using Matlab(ver 5.0) The variables for this study were angular velocity and accelerations, which were calculated and following conclusions have been made : 1) Golf swing time of stiff club is faster than that of regular club. 2) In shoulder joint motion of swing with the stiff club, x-stiff showed mort rapid negative acceleration than that of regular club. 3) In regular club, the velocity of club head would be more effective velocity, which was increasing, than those of other clubs before impact. 4) In wrist joint motion of swing with stiff club, x-stiff club showed faster than regular club in the downswing and impact more rapid negative acceleration.

Development of Operating Speed Prediction Models Reflecting Alignment Characteristics of the Upstream Road Sections at Four-Lane Rural Uninterrupted Flow Facility (상류부 선형특성을 반영한 지방부 왕복 4차로 연속류 도로의 주행속도 예측모형 개발)

  • Jo, Won-Beom;Kim, Yong-Seok;Choe, Jae-Seong;Kim, Sang-Yeop;Kim, Jin-Guk
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.5
    • /
    • pp.141-153
    • /
    • 2010
  • The study is about the development of operating speed prediction models aimed for an evaluation of design consistency of four lane rural roads. The main differences of this study relative to previous research are the method of data collection and classification of road alignments. The previous studies collected speed data at several points in the horizontal curve and approaching tangent. This method of collection is based on the assumption that acceleration and deceleration only occurs at horizontal tangents and the speed is kept constant at horizontal curves. However, this assumption leads to an unreliable speed estimation, so drivers' behavior is not well represented. Contrary to the previous approach, speed data were collected with one and data analysis using a speed profile is made for data selection before building final models. A total of six speed prediction models were made according to the combination of horizontal and vertical alignments. The study predicts that the speed data analysis and selection for model building employed in this study can improve the prediction accuracy of models and be useful to analyze drivers' speed behavior in a more detailed way. Furthermore, it is expected that the operating speed prediction models can help complement the current design-speed-based guidelines, so more benefits to drivers as real road users, rather than engineers or decision makers, can be achieved.