• Title/Summary/Keyword: 간헐적 수요예측

Search Result 8, Processing Time 0.024 seconds

A New Bootstrap Simulation Method for Intermittent Demand Forecasting (간헐적 수요예측을 위한 부트스트랩 시뮬레이션 방법론 개발)

  • Park, Jinsoo;Kim, Yun Bae;Lee, Ha Neul;Jung, Gisun
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.3
    • /
    • pp.19-25
    • /
    • 2014
  • Demand forecasting is the basis of management activities including marketing strategy. Especially, the demand of a part is remarkably important in supply chain management (SCM). In the fields of various industries, the part demand usually has the intermittent characteristic. The intermittent characteristic implies a phenomenon that there frequently occurs zero demands. In the intermittent demands, non-zero demands have large variance and their appearances also have stochastic nature. Accordingly, in the intermittent demand forecasting, it is inappropriate to apply the traditional time series models and/or cause-effect methods such as linear regression; they cannot describe the behaviors of intermittent demand. Markov bootstrap method was developed to forecast the intermittent demand. It assumes that first-order autocorrelation and independence of lead time demands. To release the assumption of independent lead time demands, this paper proposes a modified bootstrap method. The method produces the pseudo data having the characteristics of historical data approximately. A numerical example for real data will be provided as a case study.

A Study on Spare Parts Demand Forecasting Using Artificial Neural Network (인공신경망을 이용한 수리부속 간헐적 수요예측)

  • Oh, Byung-Hoon;Kim, Hyeon-Cheol
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.824-826
    • /
    • 2017
  • 수요예측은 적정 재고를 유지하기 위해 선행되어야 할 중요한 부분이라 할 수 있다. 수요예측의 정확도 향상이 적정한 재고를 유지하기 위한 토대가 된다. 하지만 수요예측을 어렵게 만드는 주요 원인 중 하나인 간헐적인 수요는 기존 시계열 기법으로 예측하는데 있어 어려움이 크다. 본 연구에서는 인공지능의 한 기법인 인공신경망을 적용하여 간헐적 품목에 대한 수요예측을 실시하였다. 6개의 기법을 통해 실험을 실시한 결과 인공신경망이 가장 오차가 적은 우수한 결과를 나타냈다.

A Comparative Model Study on the Intermittent Demand Forecast of Air Cargo - Focusing on Croston and Holts models - (항공화물의 간헐적 수요예측에 대한 비교 모형 연구 - Croston모형과 Holts모형을 중심으로 -)

  • Yoo, Byung-Cheol;Park, Young-Tae
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.71-85
    • /
    • 2021
  • A variety of methods have been proposed through a number of studies on sophisticated demand forecasting models that can reduce logistics costs. These studies mainly determine the applicable demand forecasting model based on the pattern of demand quantity and try to judge the accuracy of the model through statistical verification. Demand patterns can be broadly divided into regularity and irregularity. A regular pattern means that the order is regular and the order quantity is constant. In this case, predicting demand mainly through regression model or time series model was used. However, this demand is called "intermittent demand" when irregular and fluctuating amount of order quantity is large, and there is a high possibility of error in demand prediction with existing regression model or time series model. For items that show intermittent demand, predicting demand is mainly done using Croston or HOLTS. In this study, we analyze the demand patterns of various items of air cargo with intermittent patterns and apply the most appropriate model to predict and verify the demand. In this process, intermittent optimal demand forecasting model of air cargo is proposed by analyzing the fit of various models of air cargo by item and region.

A Study on Intermittent Demand Forecasting of Patriot Spare Parts Using Data Mining (데이터 마이닝을 이용한 패트리어트 수리부속의 간헐적 수요 예측에 관한 연구)

  • Park, Cheonkyu;Ma, Jungmok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.234-241
    • /
    • 2021
  • By recognizing the importance of demand forecasting, the military is conducting many studies to improve the prediction accuracy for repair parts. Demand forecasting for repair parts is becoming a very important factor in budgeting and equipment availability. On the other hand, the demand for intermittent repair parts that have not constant sizes and intervals with the time series model currently used in the military is difficult to predict. This paper proposes a method to improve the prediction accuracy for intermittent repair parts of the Patriot. The authors collected intermittent repair parts data by classifying the demand types of 701 repair parts from 2013 to 2019. The temperature and operating time identified as external factors that can affect the failure were selected as input variables. The prediction accuracy was measured using both time series models and data mining models. As a result, the prediction accuracy of the data mining models was higher than that of the time series models, and the multilayer perceptron model showed the best performance.

A Markov model for forecasting future demands having on/off pattern (On/Off 패턴을 따르는 수요에 대한 마코브 예측모델)

  • 여건민;전치혁
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.491-494
    • /
    • 1996
  • 주문이 매 시점마다 있는 것이 아니라 간헐적인, 즉 어느 시점에는 주문이 있고(ON) 다른시점에는 주문이 없는(OFF) 패턴에서 미래의 주문량에 대한 예측을 고려한다. 다음 시점의 예측량은 우선 주문이 있을 것인가에 대한 판단과 주문이 있다면 어느정도가 예상되는가 하는 문제의 두 가지 측면을 모두 고려해야 한다. 기존의 예측모델은 주문량 자체에 대한 고려가 일반적이며 주문시기에 대한 고려는 전무한 상태이기 때문에 이와 같은 주문패턴을 반영시키는데는 어려움이 따른다고 볼 수 있다. 본 논문에서는 이러한 주문패턴을 마코브 체인으로 모델링하고, 이러한 형태의 상태전이확률(state transition probaility) 추정식이 각각 독립적인 오목함수 (concave function)로 구성되어 있음을 보인다. 또한 확률적으로 표현되는 미래의 주문상태들에 대한 패턴을 확정시키는 알고리듬과 주문량 추정에 있어서 과거의 주문패턴을 반영시키는 모델을 제시한다.

  • PDF

Enhancing Smart Grid Efficiency through SAC Reinforcement Learning: Renewable Energy Integration and Optimal Demand Response in the CityLearn Environment (SAC 강화 학습을 통한 스마트 그리드 효율성 향상: CityLearn 환경에서 재생 에너지 통합 및 최적 수요 반응)

  • Esanov Alibek Rustamovich;Seung Je Seong;Chang-Gyoon Lim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.93-104
    • /
    • 2024
  • Demand response is a strategy that encourages customers to adjust their consumption patterns at times of peak demand with the aim to improve the reliability of the power grid and minimize expenses. The integration of renewable energy sources into smart grids poses significant challenges due to their intermittent and unpredictable nature. Demand response strategies, coupled with reinforcement learning techniques, have emerged as promising approaches to address these challenges and optimize grid operations where traditional methods fail to meet such kind of complex requirements. This research focuses on investigating the application of reinforcement learning algorithms in demand response for renewable energy integration. The objectives include optimizing demand-side flexibility, improving renewable energy utilization, and enhancing grid stability. The results emphasize the effectiveness of demand response strategies based on reinforcement learning in enhancing grid flexibility and facilitating the integration of renewable energy.

Cluster Analysis for E-Government User Typology: By Purpose of Use, Channel of Use, and Perception of Information & Communication Technology (전자정부 이용자 유형화를 위한 군집분석: 전자정부 이용 목적, 이용채널, 정보통신기술에 대한 주관적 인식을 기준으로)

  • Kim, Si-jeoung;Kim, Hyun-Joon
    • Informatization Policy
    • /
    • v.31 no.3
    • /
    • pp.48-71
    • /
    • 2024
  • In the modern era of digital sophistication, effective public administration warrants a citizen-centric approach that not only anticipates the needs of public service users but also comprehends their behaviors in undertaking proactive measures to deliver public services as needed. This study adopts a typological perspective by viewing e-government users as distinct consumer groups with individualized demands, behavioral tendencies, and perceptual attributes. Utilizing data from a 2021 survey on e-government service utilization, a two-step cluster analysis was conducted to delineate user typology through an empirical study. The analysis incorporated variables such as the purpose of using e-government, selected e-government channels, subjective perceptions of technological risk, and personal innovativeness. Accordingly, e-government users were classified into five distinct typological groups labeled "Unilateral Active Users Geared to Social Media," "Versatile Power Users," "Unilateral Pragmatic Active Users," "Occasional Passive Users," and "Minimal Users." This typological differentiation of e-government user groups is intended to help identify unique user demands and characteristics so as to facilitate the delivery of tailored e-government services and informed policy decisions catering to the diverse needs of users.

A Binomial Weighted Exponential Smoothing for Intermittent Demand Forecasting (간헐적 수요예측을 위한 이항가중 지수평활 방법)

  • Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • Intermittent demand is a demand with a pattern in which zero demands occur frequently and non-zero demands occur sporadically. This type of demand mainly appears in spare parts with very low demand. Croston's method, which is an initiative intermittent demand forecasting method, estimates the average demand by separately estimating the size of non-zero demands and the interval between non-zero demands. Such smoothing type of forecasting methods can be suitable for mid-term or long-term demand forecasting because those provides the same demand forecasts during the forecasting horizon. However, the smoothing type of forecasting methods aims at short-term forecasting, so the estimated average forecast is a factor to decrease accuracy. In this paper, we propose a forecasting method to improve short-term accuracy by improving Croston's method for intermittent demand forecasting. The proposed forecasting method estimates both the non-zero demand size and the zero demands' interval separately, as in Croston's method, but the forecast at a future period adjusted by binomial weight according to occurrence probability. This serves to improve the accuracy of short-term forecasts. In this paper, we first prove the unbiasedness of the proposed method as an important attribute in forecasting. The performance of the proposed method is compared with those of five existing forecasting methods via eight evaluation criteria. The simulation results show that the proposed forecasting method is superior to other methods in terms of all evaluation criteria in short-term forecasting regardless of average size and dispersion parameter of demands. However, the larger the average demand size and dispersion are, that is, the closer to continuous demand, the less the performance gap with other forecasting methods.