• Title/Summary/Keyword: 간접골성 고정원

Search Result 3, Processing Time 0.02 seconds

Class III nonsurgical treatment using indirect skeletal anchorage: A case report (간접 골성 고정원을 이용한 골격성 III급 부정교합의 절충 치험례)

  • Choi, Jun-Young;Lim, Won-Hee;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.38 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • Treatment of adult patients with Class III malocclusion frequently requires a combined orthodontic and surgical approach. However, if for various reasons, nonsurgical orthodontic treatment is chosen, a stable outcome requires careful consideration of the patient's biologic limitation. This case presents the orthodontic treatment of an adult with a Class III malocclusion, which was treated nonsurgically using indirect skeletal anchorage.

Three dimensional analysis of tooth movement using different types of maxillary molar distalization appliances (간접골성 고정원을 이용한 상악 구치부 원심이동 장치 종류에 따른 치아 이동 양상 평가)

  • Kim, Su-Jin;Chun, Youn-Sic;Jung, Sang-Hyuk;Park, Sun-Hyung
    • The korean journal of orthodontics
    • /
    • v.38 no.6
    • /
    • pp.376-387
    • /
    • 2008
  • Objective: The purpose of this study was to compare the three dimensional changes of tooth movement using four different types of maxillary molar distalization appliances; pendulum appliance (PD), mini-implant supported pendulum appliance (MPD), stainless steel open coil spring (SP) and mini-implant supported stainless steel open coil spring (MSP). Methods: These experiments were performed using the Calorific $machine^{(R)}$ which can simulate dynamic tooth movement. Computed tomography (CT) images of the experimental model were taken before and after tooth movement in 1 mm thicknesses and reconstructed into a three dimensional model using V-works $4.0^{TM}$. These reconstructed images were superimposed using Rapidform $2004^{TM}$ and the direction and amount of tooth movement were measured. Results: The mean reciprocal anchor loss ratio at the first premolar was 17 - 19% for the PD and SP groups. The appliances using mini-implants (MPD or MSP) resulted in less anchorage loss (7 - 8%). On application of a pendulum appliance or MPD, distalization was obtained by tipping rather than by bodily movement. Furthermore, the maxillary second molar tipped distally and bucally. But on application of MSP, distalization was achieved almost by bodily movement. Conclusions: Regarding tooth movement patterns during molar distalization, stainless steel open coil spring with indirect skeletal anchorage was relatively superior to other methods.

Effects of the Angulation of Orthodontic Mini-Implant as an Indirect Anchorage : A Three-Dimensional Finite Element Analysis (교정용 미니임플란트의 식립각도에 따른 간접골성 고정원의 효과에 대한 유한요소 해석)

  • Kim, Min-Ji;Park, Yong-Jin;Park, Sun-Hyung;Chun, Youn-Sic
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.3
    • /
    • pp.293-304
    • /
    • 2011
  • The purpose of this study was to investigate the displacement and pattern of stress distribution on periodontal ligaments of maxillary first and second molar, and on orthodontic mini-implant (OMI) surface, according to three different insertion angles to the bone surface of OMI using Dragon helix appliance, which is a newly introduced scissors-bite correcting appliance. OMI were placed between second premolar and first molar with three different insertion angles (45, 60, 90 degrees). Displacement and maximum stress distribution area (MSDA) were analyzed by finite element analysis. When the insertion angle to the alveolar bone surface was 90 degrees, maxillary first and second molar both exhibited MSDA at the palatal root apex. Maxillary first molar did not show any significant displacement, while the second molar exhibited intrusive and palatal displacement. On the OMI, as the insertion angle decreased, the MSDA shifted towards the tip, and the amount of displacement had increased. When the OMI was inserted at a 90 degree angle, anchor loss was minimized and scissors-bite correcting effect was maximized.