• Title/Summary/Keyword: 각의 측도

Search Result 67, Processing Time 0.021 seconds

이변량 반복측정자료에서 가중일치상관계수의 추정

  • 강보경;김규성
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.261-266
    • /
    • 2000
  • 이변량 반복측정자료에서 Chinchilli 등(1996)이 제안한 가중일치상관계수는 두 변수의 일치성을 나타내는 측도이다. 기존에 제안된 가중일치상관계수 추정법은 변동효과 및 측정오차의 분산성분을 각각 최소제곱법으로 비편향 추정하여 구하는 것이다. 본 연구에서는 반복측정자료의 주변 우도함수를 설정한 후, 우도함수에 기초한 분산성분을 구하여 가중일치상관계수를 추정하는 방법을 제안한다. 이때, 각 분산성분은 유사/의사 우도함수 및 사후 분포에서 반복시행을 통하여 구해진다.

  • PDF

Region-based Motion Vector Estimation Using Hausdorff Measure (Hausdorff 측도를 이용한 영역기반 움직임 벡터 추정)

  • 임봉일;최윤식
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.123-126
    • /
    • 1997
  • 최근에는 영역(혹은 객체)를 이용하여 비디오 시퀀스를 표현하거나 부호화하는 기법들이 많이 연구되고 있다. 이러한 부호화 기법에서는 형태정보를 효율적으로 이용하는 것이 중요함에도 불구하고, 현재 사용되고 있는 대부분의 기법에서는 기존의 블록 기반 부호화 알고리즘에서처럼 오직 PSNR 만을 고려하여 움직임 벡터를 추정하고 있다. 따라서, 형태 정보를 다루는 효율적 움직임 추정 알고리즘이 필요하다. 본 논문에서는 각 영역의 경계(contour)를 잘 피팅(fitting)시키는 움직임 추정 방법을 생각해 본다. 이를 위하여 PSNR과 영역의 모양을 함께 고려하는 비용함수를 제안하고 이를 이용한 움직임 벡터 추정을 고려해 본다.

  • PDF

perturbed Cantor set and quasi-self-similar measure

  • 백인수
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.12.2-12
    • /
    • 2003
  • 미분 가능한 함수가 독립변수의 각 점에서 미분계수를 가지듯이 가장 일반화된 Cantor집합의 각 점에서 weak local dimension 을 갖는다. 이러한 weak local dimension 은 두 가지가 있는데 weak lower local dimension 과 weak upper local dimension 이 있다 weak lower local dimension 은 국소적인 의미로 perturbed Cantor 집합의 lower Cantor dimension 이고 Hausdorff dimension 과 관련이 있다. weak upper local dimension 은 국소적인 의미로 perturbed Cantor 집합의 upper Cantor dimension 이고 packing dimension 과 관련이 있다. 이때 각 점에 대응하는 유관한 측도는 quasi-self-similar measure 이며 그 점의 weak lower local dimension 이 s 이면 그 점의 s-차원 quasi-self-similar measure 의 lower local dimension 이 s 가 된다. 마찬가지로 그 점의 weak upper local dimension 이 s 이면 그 점의 s-차원 quasi-self-similar measure 의 upper local dimension 이 s 가 된다. 따라서 이와 같은 사실을 이용하면 가장 일반화된 Cantor집합의 각 점에서의 weak local dimension 을 이용하여 그 집합의 Hausdorff 또는 packing 차원의 정보를 얻을 수 있을 뿐 더러 weak local dimension 을 이용한 spectrum 을 또한 구할 수 있다. 한편 weak local dimension 과 유관한 quasi-self-similar measure 는 집합의 spectrum을 생성하며 이 spectrum 을 이루는 각 부분집합의 차원에 대하여 보다 좋은 정보를 주는 transformed dimension 과 또 다른 관련을 갖게 된다.

  • PDF

Cluster Merging Using Density based Fuzzy C-Means algorithm (밀도 기반의 퍼지 C-Means 알고리즘을 이용한 클러스터 합병)

  • 한진우;전성해;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.235-238
    • /
    • 2003
  • Fuzzy C-Means(FCM) 알고리즘은 초기 군집 중심의 개수와 위치에 따라 군집 결과의 성능차이가 많이 나타난다. 하지만 일반적인 경우에 군집 중심의 개수는 분석가의 주관에 의해 결정되고, 임의적으로 결정되기 때문에 원래 데이터의 구조와는 무관하게 수행되어 최적화된 군집화 수행을 실행하지 못하는 경우가 발생하게 된다. 따라서 본 논문에서는 원래의 데이터의 구조에 좀더 근접한 퍼지 군집화를 수행하기 위하여 격자를 바탕으로 한 데이터의 밀도를 이용한 FCM을 제안하고, 이러한 밀도 기반 FCM에 의해 결정된 군집의 합병 기법을 제안하였다. N-차원의 데이터 공간을 N-차원의 격자로 나누고, 초기 군집 중심의 개수와 위치는 각 격자의 밀도를 바탕으로 결정된다. 초기화 이후에 각 격자 내부에서 FCM을 이용하여 군집화를 수행하고, 계속해서 이웃 격자의 군집결과에 대하여 군집간의 유사도 측도를 이용하여 군집 합병을 수행함으로써 데이터의 자연적인 구조에 근접한 군집화를 수행하였다. 제안된 군집화 합병 기법의 향상된 성능은 UCI Machine Learning Repository 데이터를 이용하여 확인하였다.

  • PDF

A Comparison of Cluster Analyses and Clustering of Sensory Data on Hanwoo Bulls (군집분석 비교 및 한우 관능평가데이터 군집화)

  • Kim, Jae-Hee;Ko, Yoon-Sil
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.745-758
    • /
    • 2009
  • Cluster analysis is the automated search for groups of related observations in a data set. To group the observations into clusters many techniques has been proposed, and a variety measures aimed at validating the results of a cluster analysis have been suggested. In this paper, we compare complete linkage, Ward's method, K-means and model-based clustering and compute validity measures such as connectivity, Dunn Index and silhouette with simulated data from multivariate distributions. We also select a clustering algorithm and determine the number of clusters of Korean consumers based on Korean consumers' palatability scores for Hanwoo bull in BBQ cooking method.

Evaluation of Interpretability for Generated Rules from ANFIS (ANFIS에서 생성된 규칙의 해석용이성 평가)

  • Song, Hee-Seok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.123-140
    • /
    • 2009
  • Fuzzy neural network is an integrated model of artificial neural network and fuzzy system and it has been successfully applied in control and forecasting area. Recently ANFIS(Adaptive Network-based Fuzzy Inference System) has been noticed widely among various fuzzy neural network models because of outstanding performance of control and forecasting accuracy. ANFIS has capability to refine its fuzzy rules interactively with human expert. In particular, when we use initial rule structure for machine learning which is generated from human expert, it is highly probable to reach global optimum solution as well as shorten time to convergence. We propose metrics to evaluate interpretability of generated rules as a means of acquiring domain knowledge and compare level of interpretability of ANFIS fuzzy rules to those of C5.0 classification rules. The proposed metrics also can be used to evaluate capability of rule generation for the various machine learning methods.

  • PDF

Analysis of internet addiction in Korean adolescents using sparse partial least-squares regression (희소 부분 최소 제곱법을 이용한 우리나라 청소년 인터넷 중독 자료 분석)

  • Han, Jeongseop;Park, Soobin;Lee, onghwan
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.253-263
    • /
    • 2018
  • Internet addiction in adolescents is an important social issue. In this study, sparse partial least-squares regression (SPLS) was applied to internet addiction data in Korean adolescent samples. The internet addiction score and various clinical and psychopathological features were collected and analyzed from self-reported questionnaires. We considered three PLS methods and compared the performance in terms of prediction and sparsity. We found that the SPLS method with the hierarchical likelihood penalty was the best; in addition, two aggression features, AQ and BSAS, are important to discriminate and explain latent features of the SPLS model.

Association rule ranking function using conditional probability increment ratio (조건부 확률증분비를 이용한 연관성 순위 결정 함수)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.709-717
    • /
    • 2010
  • The task of association rule mining is to find certain association relationships among a set of data items in a database. There are three primary measures for association rule, support and confidence and lift. In this paper we developed a association rule ranking function using conditional probability increment ratio. We compared our function with several association rule ranking functions by some numerical examples. As the result, we knew that our decision function was better than the existing functions. The reasons were that the proposed function of the reference value is not affected by a particular association threshold, and our function had a value between -1 and 1 regardless of the range for three association thresholds. And we knew that the ranking function using conditional probability increment ratio was very well reflected in the difference between association rule measures and the minimum association rule thresholds, respectively.

Generally non-linear regression model containing standardized lift for association number estimation (연관성 규칙 수의 추정을 위한 일반적인 비선형 회귀모형에서의 표준화 향상도 활용 방안)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.629-638
    • /
    • 2016
  • Among data mining techniques, the association rule is one of the most used in the real fields because it clearly displays the relationship between two or more items in large databases by quantifying the relationship between the items. There are three primary quality measures for association rule; support, confidence, and lift. We evaluate association rules using these measures. The approach taken in the previous literatures as to estimation of association rule number has been one of a determination function method or a regression modeling approach. In this paper, we proposed a few of non-linear regression equations useful in estimating the number of rules and also evaluated the estimated association rules using the quality measures. Furthermore we assessed their usefulness as compared to conventional regression models using the values of regression coefficients, F statistics, adjusted coefficients of determination and variation inflation factor.

Association rule ranking function by decreased lift influence (향상도 영향 감소화에 의한 연관성 순위결정함수)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.397-405
    • /
    • 2010
  • Data mining is the method to find useful information for large amounts of data in database, and one of the important goals is to search and decide the association for several variables. The task of association rule mining is to find certain association relationships among a set of data items in a database. There are three primary measures for association rule, support and confidence and lift. In this paper we developed a association rule ranking function by decreased lift influence to generate association rule for items satisfying at least one of three criteria. We compared our function with the functions suggested by Park (2010), and Wu et al. (2004) using some numerical examples. As the result, we knew that our decision function was better than the function of Park's and Wu's functions because our function had a value between -1 and 1regardless of the range for three association thresholds. Our function had the value of 1 if all of three association measures were greater than their thresholds and had the value of -1 if all of three measures were smaller than the thresholds.