본 연구의 목적은 도(degree)와 라디안을 호의 측도로 해석하는 것이 라디안과 각의 측정에 대한 개념적 이해에 어떠한 영향을 미치는지 살펴보는 것이다. 이에 호의 길이를 이용한 각의 측도에 대한 내용지식을 26명의 예비중등교사를 대상으로 조사하였으며, 그 결과를 반영하여 두 명의 중학생들을 대상으로 실험을 진행하였다. 예비교사들과 두 중학생의 반응을 분석한 결과, 도(degree)의 개념을 호의 측도로 해석한 경험이 라디안의 이해에 긍정적인 영향을 미쳤으며, 호의 측도로 각의 측도를 파악하는 과정이 '선형 측정'에 대한 개념적 이해를 가능하게 하였다. 또한 각에 관한 다양한 문제에서 원의 맥락과 호의 등분 전략이 효과적인 문제해결전략으로 작용하였으며, 각과 호의 측도 사이의 관계를 탐구할 수 있는 직접적인 조작활동을 제공하는 것이 각의 측정 개념에 대한 이해에 도움을 줄 수 있다는 것을 확인하였다.
Journal of the Korean Data and Information Science Society
/
제26권2호
/
pp.367-376
/
2015
데이터마이닝 기법 중의 하나인 군집분석은 다양한 특성을 지닌 관찰대상에 대해 유사성을 바탕으로 동질적인 군집으로 묶은 후, 동일 군집에 속해 있는 공통된 특성을 조사하는데 이용되는 기법이다. 본 논문에서는 주변 확률을 고려하지 않는 확률적 흥미도 측도 기반 유사성 측도인 Yule I과 II, Michael, Digby, Baulieu, 그리고 Dispersion 측도에 대해 상한 및 하한을 설정함으로써 이들의 대소관계를 규명하였다. 그 결과, 세 가지 유형의 대소 관계가 성립한다는 사실을 수식의 증명뿐만 아니라 실제 데이터 및 모의실험 데이터에 의해서도 확인할 수 있었다. 이들 측도들은 각 경계에 있는 측도와는 더욱 더 유사한 값을 가지므로 각 측도의 상한 및 하한은 여러 가지 측도들을 분류하는 도구가 되며, 실제 값의 관점에서 각 측도들의 관계를 알게 되면 주어진 알고리즘의 안정화에 도움이 될 수 있을 것이다.
최적분류점에 대한 대부분의 정확도 측도들은 두 종류의 누적분포함수와 확률밀도함수를 기반으로 정의하거나 또는 ROC 곡선과 AUC를 기반으로 정의하는 방법으로 구분하는데, Unal (2017)은 두 가지 방법을 혼합하여 누적분포함수와 AUC를 모두 고려하는 정확도 측도 Index of Union (IU) 통계량을 제안하였다. 본 연구에서는 IU 통계량을 포함한 열 개의 정확도 측도들을 여섯 종류의 범주로 구분하여 각 범주에 속하는 측도들을 비교하면서 IU의 장점을 연구한다. 다양한 정규혼합분포를 설정하여 각각의 측도들에 대응하는 최적분류점들을 구하고 각 분류점에 대응하는 제1종과 제2종 오류 그리고 두 종류의 오류합을 구해서 오류들의 크기를 비교하면서 분류정확도 측도들의 판별력을 비교하면서 IU의 성격과 특징을 탐색한다. 두 종류 분포들의 평균 차이가 증가할수록 IU 통계량의 제1종 오류와 오류합의 크기가 최고의 분류정확도를 갖는 제2범주의 정확도 측도의 오류에 수렴하는 것을 발견하였다. 그러므로 IU는 모형의 판별력을 평가하는 정확도 측도로 활용할 수 있다.
이 논문의 주요 목적은 정규성 가정 하에 일변량 공간 연관성 측도의 첫 번째 네 적률을 구해내는 일반화된 추출 절차를 정식화하고, 그것을 바탕으로 각 측도의 가설 검정을 위해 정규근사가 갖는 가능성과 한계를 평가하는 것이다. 중요 연구 결과는 다음과 같다. 첫째, 이전의 연구에 기반함으로써, 정규성 가정 하에 전역적 측도와 국지적 측도에 모두 적용될 수 있는 일반화된 적률 추출절차가 도출되었다. 개별 공간 연관성 측도를 위한 필수적인 메트릭스가 적절히 정의되었을 때, 일반화된 유의성 검정 방법은 각 공간 연관성 측도의 기대값과 분산은 물론 첨도와 왜도를 효과적으로 산출하였다. 둘째, 첫 번째 두 적률에 근거한 정규근사 방법은 전역적 통계량에 대해서는 유효한 것으로 판명되었지만, 국지적 통계량에 대해서는 매우 높은 왜도와 첨도로 말미암아 그 유효성이 현저히 떨어지는 것으로 드러났다.
Journal of the Korean Data and Information Science Society
/
제26권1호
/
pp.89-99
/
2015
세계 경제 포럼과 대한민국 지식경제부에서 10대 핵심정보기술 가운데 하나로 빅 데이터를 선정한 바 있다. 빅 데이터에 대한 분석은 결국 데이터들이 가지고 있는 속성을 얼마나 효과적으로 분석하느냐가 관건이다. 이를 위한 기법들 중에서 군집 분석 방법은 거리 또는 유사성 측도를 이용하여 각 개체의 유사성을 측정하여 유사도가 높은 대상 집단을 분류하고 군집에 속한 개체들의 유사성과 서로 다른 군집에 속한 개체간의 상이성을 밝혀내는 통계분석 기법이다. 군집분석에서 이용되고 있는 유사성 측도는 데이터의 속성에 따라 여러 가지의 형태로 분류할 수 있으며, 범주형 데이터에 적용 가능한 측도들은 음의 일치 빈도를 고려한 측도, 음의 일치 빈도를 고려하지 않는 측도, 그리고 주변 확률 분포의 포함 여부에 의한 측도 등으로 구분할 수 있다. 음의 일치 빈도는 동시발생빈도와 더불어 두 항목간의 관련성에 대한 순방향성을 의미하므로 이를 고려하지 않는 유사성 측도들보다 이를 고려한 유사성 측도들이 좀 더 현실적인 측도라고 할 수 있다. 따라서 본 논문에서는 이분형 데이터에 대해 일반적으로 많이 활용되고 있는 음의 일치 빈도를 고려한 측도들에 대해 대소 관계를 규명함으로써 이들의 상한 및 하한을 설정하는 문제를 고려하였다.
본 논문에서는 비콘이 송출한 블루투스 신호의 RSSI를 이용한 근거리 측도에서, 어떠한 조건에서 상대적으로 안정적인 양상의 거리 측도가 이뤄질 수 있는지 분석하였다. 실험 결과, 비콘 신호 송출 각도 조건이 수직 배치일 때와 Tx-Power 조건이 3.5m일 때 실제 거리와 측정 거리가 근접하고, 상대적으로 안정한 양상의 거리 측도가 이뤄졌음을 확인하였다. 본 실험 결과를 바탕으로 근거리 측도가 필요한 서비스에 적용할 수 있으며, 고정 계측 최적조건을 이용하여 향후 동적 계측 연구에 활용할 수 있다.
Journal of the Korean Data and Information Science Society
/
제26권4호
/
pp.857-864
/
2015
데이터 마이닝은 다양한 형태의 방대한 데이터 집합으로부터 보이지 않는 지식이나 새로운 법칙을 발견한 후, 이를 바탕으로 의사결정 등을 위한 정보로 활용하고자 하는 것이다. 데이터 마이닝 기법중의 하나인 군집 분석은 거리 또는 유사성 측도를 이용하여 집단을 분류하고, 구분된 각 집단의 특성을 파악하기 위한 기법이다. 본 논문에서는 주변 확률이 일부 포함된 확률적 흥미도 측도 기반의 유사성 측도들인 Peirce I, Peirce II, Cole I, Cole II, 그리고 이들을 응용한 Park I 및 Park II에 대한 대소 관계를 수식의 증명뿐만 아니라 예제 데이터에 의해서도 규명하였다. 그 결과, Cole I과 Cole II의 측도를 동시에 고려한 Loevinger 측도가 기존의 측도들 중에서는 상한이 되나 Park I 및 Park II를 함께 고려했을 경우에는 동시발생비율, 동시 비발생비율, 그리고 두 가지 형태의 불일치비율의 크기에 따라 변한다는 사실을 확인하였다.
한국정보시스템학회 1997년도 추계학술대회논문집 기업경쟁력 향상을 위한 정보통신 기술의 활용
/
pp.359-367
/
1997
소프트웨어 개발 수명주기 동안의 소프트웨어 테스팅 단계에서 Jelinski와 Moranda의 소프트웨어 고장 데이트 해석 모형이, 병행처리 소프트웨어 환경에서 나타날 수 있는 여러 개의 소프트웨어 오류가 각 테스팅 스테이지에서 다중적으로 발생하여 하나의 소 프트웨어 고장의 원인이 되는 소프트웨어 테스팅 환경에서는 적절하지 않기 때문에, 다중 소프트웨어 오류가 하나의 고장을 유발하는 테스팅 데이터 해석을 위한 베이지안 소프트웨 어 신뢰도 성장 모형을 제안하면서 몇 가지 소프트웨어 신뢰성 측도들에 관해서 비정도 사 전정보를 고려한 베이즈 추정량을 구한다. 그리고 제안된 베이지안 소프트웨어 신뢰도 측도 들의 베이즈 추정량의 성능 평가를 위해서 몬테카를로 시뮬레이션을 수행하고 MSE와 Bias 의 관점에서 성능을 비교한다.
Journal of the Korean Data and Information Science Society
/
제22권4호
/
pp.741-753
/
2011
마이크로어레이 유전자 발현데이터인 효모데이터를 이용하여 군집분석을 실시하였다. 모형기반 군집방법, K-평균법, 중앙값 중심분포 (PAM), 자기 조직화 지도 (SOM), 계층적 Ward 군집방법을 이용하여 군집화를 실시하고, 연결성 측도 (connectivity), Dunn지수, 실루엣 측도 (silhouette)를 이용하여 각 군집방법에 대한 유효성을 측정하고 군집분석 결과를 비교하고자한다.
데이터의 군집을 찾아내는 문제는 패턴 인식, 이미지 처리, 시장 조사 등 많은 응용 분야에서 널리 사용되고 있다. 군집의 질을 결정하는 핵심 요소로는 유사 측도, 차원의 개수 등이 있다. 유사 측도는 데이터의 특성을 반영하여 다르게 정의되어야 하는데, 대부분 기존의 연구들은 데이터를 특징 지어주는 속성이 수치형으로 주어진 경우에 국한되어 있었다. 속성이 범주형으로 주어진 경우도 실생활에 많이 존재하지만, 범주형 변수에 대한 속성값의 유사성은 값의 순서가 고유하게 정해지지 않아서 정의하기 어렵다. 이에 더하여, 고차원 데이터에 대해서는 데이터 점들이 희박하게 위치하여 가까운 점과 먼 점간의 차이가 거의 없고, 군집화 결과가 좋지 않을 수 있다. 이 문제를 해결하기 위해 부분 차원 군집화 방법이 제안되어 왔다. 부분 차원 군집화 방법은 각 군집을 발견하기에 적합한 부분 차원을 선택하면서 군집화를 수행하는 방법이다. 본 논문에서는 범주형 속성으로 특징지어진 고차원 데이터를 부분 차원 군집화하기 위한 새로운 유사 측도를 제안한다. 유사 측도는 각 군집은 다른 군집과 구별되는 특정 정보를 잘 표현할 수 있어야 한다는 기본적인 가정 하에 속성들 사이의 상관성을 반영하여 정의되었다. 이들 모두를 반영한 유사측도는 기존에 존재하지 않았다는 점에서 본 연구는 의미가 있다. 실제 데이터 집합을 군집화하는 실험을 통해 제안하는 방법이 다른 군집화 방법보다 저차원 데이터와 고차원 데이터 모두에 대해 좀 더 정확한 군집 결과를 얻을 수 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.