• Title/Summary/Keyword: 각도 측위

Search Result 129, Processing Time 0.019 seconds

Performance Verification of Psudolite-based Augmentation System Using RF signal logger and broadcaster (RF 신호 수집/방송 장치를 활용한 의사위성 기반 광역보정시스템의 후처리 성능 검증)

  • Han, Deok-Hwa;Yun, Ho;Kim, Chong-Won;Kim, O-Jong;Kee, Chang-Don
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.391-397
    • /
    • 2014
  • Wide Area Differential GNSS(WA-DGNSS) was developed in order to improve the accuracy and integrity performance of GNSS. In this paper, overall structure of Pseudolite-Based Augmentation System(PBAS) and experimental methods which enables the post-processing test with commercial receiver will be described. For generating augmenting message, GPS measurement collected from five NDGPS reference stations were processed by reference station S/W and master station S/W. The accuracy of augmenting message was tested by comparing SP3, IONEX data. In the test, RF signal of user was collected and correction data were generated. After that, RF signal was broadcasted with pseudolite signal. Test was conducted using three commercial receiver and the performance was compared with MSAS and standalone user. From the position output of each receiver, it was shown that improved position was obtained by applying augmenting message.

Design and Implementation of a Spatio-Temporal Middleware for Ubiquitous Environments (유비쿼터스 환경을 위한 시공간 미들웨어의 설계 및 구현)

  • Kim, Jeong-Joon;Jeong, Yeon-Jong;Kim, Dong-Oh;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.43-54
    • /
    • 2009
  • As R&D(Research and Development) is going on actively to develop technologies for the ubiquitous computing environment, which Is the human-oriented future computing environment, GIS dealing with spatio-temporal data is emerging as a promising technology. This also increases the necessity of the middleware for providing services to give interoperability in various heterogeneous environments. The core technologies of the middleware are real-time processing technology of data streams coming unceasingly from positioning systems and data stream processing technology developed for non-spatio-temporal data. However, it has problems in processing queries on spatio-temporal data efficiently. Accordingly, this paper designed and implemented the spatio-temporal middleware that provides interoperability between a mobile spatio-temporal DBMS(DataBase Management System) and a server spatio-temporal MMDBMS(Main Memory DataBase Management System). The spatio-temporal middleware maintains interoperability among heterogeneous devices and guarantees data integrity in query processing through real-time processing of unceasing spatio-temporal data streams and two way synchronization of spatio-temporal DBMSs. In addition, it manages session for the connection of each spatio-temporal DBMS and manages resources for its stable operation. Finally, this paper proved the usability of the spatio-temporal middleware by applying it to a real-time position tracking system.

  • PDF

Development of Biotelemetry Method by Combining the SSBL Method and the Pinger Synchronizing Method (1) - Design and production of system - (SSBL 방식과 핑거동기 방식을 조합한 바이오텔레메터리 방식의 개발 (1) -시스템의 설계 및 제작 -)

  • 박주삼;고탁창언
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.218-229
    • /
    • 2003
  • A new biotelemetry method that the installation and the treatment of equipment is convenient and the instantaneously detailed location of the fish attached the pinger is able to track comparatively easily was developed. The receiving system in this biotelemetry method was advanced for track the detailed behavior of the fish by the miniature tracking pinger, because it was a burden to fish to add the pinger with the water temperature and the pressure sensor. By combining of the super short base line (SSBL) method to detect the direction of pinger and the pinger synchronizing method to measure the range from receiving transducer to pinger, the three dimensional locations of fish to the receiving transducer is gotten instantaneously. The receiving system is devised to realize the high precision or wide detection range by application of the basic design method for receiving system of biotelemetry developed by the present authors and the hydrophone array configuration. The measurement distance error in the pinger synchronizing method is minimized through the correction of which the deviation of transmission pluse period of pinger is caused by changing water temperature. A prototype system which is able to track the instantaneously detailed location of the fish by the SSBL and pinger synchronizing biotelemetry (SPB) method was produced.

Generation of Korean Ionospheric Total Electron Content Map Considering Differential Code Bias (Differential Code Bias를 고려한 한반도 전리층 총전자수 지도 생성)

  • Lee, Chang-Moon;Kim, Ji-Hye;Park, Kwan-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.293-301
    • /
    • 2011
  • The ionospheric delay is the largest error source in GPS positioning after the SA effect has been turned off in May, 2000. In this study, we used 44 permanent GPS stations being operated by National Geographic Information Institute (NGII) to estimate Total Electron Content (TEC) based on pseudorange measurements phase-leveled by a linear combination with carrier phases. The Differential Code Bias (DCB) of GPS satellites and receivers was estimated and applied for an accurate estimation of the TEC. To validate our estimates of DCB, changes of TEC values after DCB application were investigated. As a result, the RMS error went down by about an order of magnitude; from 35~45 to 3~4 TECU. After the DCB correction, ionospheric TEC maps were produced at a spatial resolution of $1^{\circ}{\times}1^{\circ}$. To analyze the effect of the number of sites used for map generation on the accuracy of TEC values, we tried 10, 20, 30, and 44 stations and the RMS error was computed with the Global Ionosphere Map as the truth. While the RMS error was 5.3 TECU when 10 sites are used, the error reduced to 3.9 TECU for the case of 44 stations.

Development of the Simulation Tool to Predict a Coverage of the R-Mode System (지상파 통합항법 서비스의 성능예측 시뮬레이션 툴 개발)

  • Son, Pyo-Woong;Han, Younghoon;Lee, Sangheon;Park, Sanghyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.429-436
    • /
    • 2019
  • The eLoran system is considered the best alternative because the vulnerability of satellite navigation systems cannot be resolved as perfect. Thus, South Korea is in the process of establishing a testbed of the eLoran system in the West Sea. To provide resilient navigation services to all waters, additional eLoran transmitters are required. However, it is difficult to establish eLoran transmitters because of various practical reasons. Instead, the positioning with NDGNSS/AIS source can expand the coverage and its algorithm with applying continuous waves is under development. Using the already operating NDGNSS reference station and the AIS base station, it is possible to operate the navigation system with higher accuracy than before. Thus, it is crucial to predict the performance when each system is integrated. In this paper, we have developed a simulation tool that can predict the performance of terrestrial integrated navigation system using the eLoran system, maritime NDGNSS station and the AIS station. The esitmated phase error of the received signal is calculated with the Cramer-Rao Lower Bound factoring the transmission power and the atmospheric noise according to the transmission frequency distributed by the ITU. Additionally, the simulation results are more accurate by estimating the annual mean atmospheric noise of the 300 kHz signal through the DGPS signal information collected from the maritime NDGNSS station. This approach can further increase the reliability of simulation results.

The study of RFID Tag read range test with RFID Emulator (RFID Emulator를 이용한 Tag 인식거리 시험 연구)

  • Joo, Hae-Jong;Kim, Young-Choon;Lee, Eu-Soo;Cho, Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4536-4542
    • /
    • 2011
  • RFID technology uses communication through the use of radio waves to transfer data between a reader and an electronic tag attached to an object for the purpose of identification and tracking. RFID technology can be applied to the various service areas such as, position determination technology, remote processing management and information exchange between objects by collecting, storing, processing, and tracing their informations from the tag attached to the objects using electronic wave by recognizing the information and environment of those objects. However, to revitalize these various services, it is important to test the RFID tag performance. But There are few instructions which have and hold the RFID emulator technology for organizing the RFID international test environment. Also there are not many manufacturing companies which recognize about the exact RFID test standard and requirements for the International Standards. In this paper, a construction of Tag Performance test environments and test methods are suggested which are required by EPCglobal or ISO/IEC. Details about RFID Tag performance test items proposed by ISO/IEC FDIS 18046-3 are explained, performed RFID Tag performance test through the performing test against each measured item, and draw a result for the RFID Tag performance of International Standards.

A Space Skew and Crosstalk Cancellation Scheme Based on Indoor Spacial Information Using Self-Generating Sounds (자체발성음을 이용한 실내공간정보 획득 및 공간뒤틀림/상호간섭 제거기법)

  • Kim, Yeong-Moon;Yoo, Seung-Soo;Lee, Ki-Seung;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.246-253
    • /
    • 2010
  • In this paper, a method of removing the space skew and cross-talk cancellation is proposed where the self-generated signals from the subject are used to obtain the subject's location. In the proposed method, the good spatial sound image is maintained even when the listener moves from the sweet spot. Two major parts of the proposed method are as follows: listener position tracking using the stimuli from the subject and removal of the space skew and cross-talk signals. Listener position tracking is achieved by estimation of the time difference of arrival (TDoA). The position of the listener is then computed using the Talyer-series estimation method. The head-related transfer functions (HRTF) are used to remove the space skew and cross-talk signals, where the direction of the HRTF is given by the one estimated from the listener position tracking. The performance evaluation is carried out on the signals from the 100 subjects that are composed of the 50 female and 50 male subjects. The positioning accuracy is achieved by 70%~90%, under the condition that the mean squared positioning error is less than $0.07m^2$. The subjective listening test is also conducted where the 27 out of the 30 subjects are participated. According to the results, 70% of the subjects indicates that the overall quality of the reproduced sound from the proposed method are improved, regardless of the subject's position.

A Study on Pseudo-Range Correction Modeling in order to Improve DGNSS Accuracy (DGNSS 위치정확도 향상을 위한 PRC 보정정보 모델링에 관한 연구)

  • Sohn, Dong Hyo;Park, Kwan Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.43-48
    • /
    • 2015
  • We studied on pseudo-range correction(PRC) modeling in order to improve differential GNSS(DGNSS) accuracy. The PRC is the range correction information that provides improved location accuracy using DGNSS technique. The digital correction signal is typically broadcast over ground-based transmitters. Sometimes the degradation of the positioning accuracy caused by the loss of PRC signals, radio interference, etc. To prevent the degradation, in this paper, we have designed a PRC model through polynomial curve fitting and evaluated this model. We compared two quantities, estimations of PRC using model parameters and observations from the reference station. In the case of GPS, the average is 0.1m and RMSE is 1.3m. Most of GPS satellites have a bias error of less than ${\pm}1.0m$ and a RMSE within 3.0m. In the case of GLONASS, the average and the RMSE are 0.2m and 2.6m, respectively. Most of satellites have less than ${\pm}2.0m$ for a bias error and less than 3.0m for RMSE. These results show that the estimated value calculated by the model can be used effectively to maintain the accuracy of the user's location. However;it is needed for further work relating to the big difference between the two values at low elevation.

A real-time construction management of a tunnel using position tracking sensor (위치추적 센서를 이용한 터널의 실시간 시공관리)

  • Lee, Kang-Hyun;Kim, Dae-Won;Mun, Sung-Mo;Cho, Hun-Hee;Kang, Kyung-In;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.133-148
    • /
    • 2011
  • Construction sites are becoming larger and complex with the growth of national economy. Accordingly, it is important to identify real-time information about materials, equipments, and manpower during construction at sites. Even though research utilizing position tracking sensors has been conducted in architectural engineering fields, this area of research is almost nil in civil engineering fields. Therefore, a feasibility study to find a way to apply position tracking sensors to an in-situ tunnel construction site adopting conventional tunnelling method is performed in this study. A methodology is proposed that the progress management of the tunnelling work can be monitored by checking construction materials needed at job site and the safety management system can be assessed by checking distance between in-situ workers and construction equipments. The most representative materials were identified so that IT technology can be applied by attaching and monitoring sensors to the selected materials. Also, time of arrival (TOA) for a position determination technology along with a wireless network technology was chosen and build wireless network system. The adopted methodology was applied to an in-situ tunnelling site, and verified the usefulness of the proposed system.