• Title/Summary/Keyword: 가황

Search Result 244, Processing Time 0.02 seconds

Cure Behaviors and Physical Properties of Recycled/Virgin Nitrile Rubber (NBR) Blends by High Temperature Shear-Crushing Technique (고온전단분쇄기술을 이용한 재생/신재 니트릴고무(NBR) 블렌드물의 가황거동 및 물리적 특성)

  • Park, Hyun-Ho;Kim, Joon-Hyung;Lee, Chang-Seop;Na, Seong-Taek
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.842-847
    • /
    • 2005
  • Virgin NBR and recycled NBR particles, which were pulverized from NBR scraps by high temperature shear-crushing technique, were blended with different mixing ratio. The effects of the recycled NBR content on the cure characteristics and physical properties of these blends were investigated and resistance properties of these blends to heat and various fluids were also studied. The study of cure characteristics showed that the viscosity increased but the scorch time decreased. The physical properties of rubber blends were improved with the addition of the recycled NBR for heat resistance and various fluid tests.

Cure Characteristics of Carbon Block-Filled Rubber Compounds Composed of NR, SBR, and BR (NR, SBR, BR로 이루어진 고무배합물의 고무조성비에 따른 가황 특성)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.215-226
    • /
    • 2000
  • Cure characteristics of carbon black-filled rubber compounds with different rubber composition were studied using a rheometer. The carbon black-filled rubber compounds with single, binary, and ternary rubber compositions of natural rubber (NR), styrene-butadiene rubber (SBR), and butadiene rubber (BR) were used. Delta-torques of the NR/BR- and SBR/BR-based compounds with a high BR content were higher than those of the single rubber-based compounds. For ternary rubber-based compounds, the delta-torques of the compounds were lower when the difference in the rubber content ratios was small than when it was big. Scorch and optimum cure times of the rubber compounds became shorter by increasing the content of NR in the compounds while those became longer by increasing the SBR content. Cure rates of the rubber compounds increased with a decrease of the SBR content in the rubber compounds. Reversion ratios decreased with an increase of the SBR content in the rubber compounds.

  • PDF

Heat and Crack Resistance of Natural Rubber(NR) Compounds According to the Type of Antioxidants (산화방지제 종류에 따른 천연고무 배합물의 내열성 및 내크랙성)

  • Roh, Jong-Dae;Shin, Jun-Geun;Kim, Jin-Tae;Hur, Jae-Young;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.341-349
    • /
    • 1999
  • In this study, heat and crack resistance of natural rubber (NR) compounds was evaluated. To prevent the effects of the crosslinking system, a conventional vulcanization system was selected, where the accelerator/sulfur ratio was fixed to 0.25. Vulcanizates containing phenylenediamine showed high tensile strength and tear strength compared to other vulcanizates because phenylenediamine can cause additional crosslinking and high dispersion In the vulcanizates. In the pure shear test, vulcanizates containing phenylenediamine showed an excellent tearing energy which was due to the irregular crack path, and showed excellent heat and crack resistance which was also due to the good dispersity of antioxidant and additional crosslinks in the rubbber vulcanizates.

  • PDF

Interfacial Tacky and Adhesive Characteristics between Tire Tread Compounds and Rubber Cement (타이어 트레드 컴파운드와 고무 시멘트 계면의 점착과 접착 특성)

  • Song, Yo Soon;Kim, Kun Ok
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.399-404
    • /
    • 2018
  • This study compared the tackiness and adhesion of different tire tread compounds and rubber cements before and after vulcanization. The tackiness of natural rubber (NR) cement was the highest for all tread compounds before vulcanization, and the decrease in tackiness of NR cements over time was smaller than that of synthetic rubber cements. The tackiness before vulcanization was affected by the glass transition temperature of the rubber used in the cement and the decrease in tackiness over time of NR was smaller compared to that of using the synthetic rubber. The adhesion of NR-based cements after vulcanization was high for NR tread compounds but low for synthetic rubber tread compounds. On the contrary, the adhesion of emulsion (SBR) and solution SBR cements was high on all tread compounds which was shown to be higher when the rate of vulcanization of cement rubber was lower.

The Effect of Cure System for the Viscoelastic Properties of Vulcanized Rubber (가황시스템 변화가 가황고무의 점탄성적 특성에 미치는 효과)

  • Park, Nam-Cook;Lee, Seog
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.11-19
    • /
    • 1999
  • Rebound, storage and loss modulus, and tan ${\delta}$ were investigated on cured rubbers with various ratios of sulfur to accelerator and the volume fraction of carbon black in the cured rubbers. The rebound was increased as the sulfur to accelerator ratio and the volume fraction of carbon black decreased. The storage modulus decreased as the loading of carbon black and the strain increased regardless of the cure systems. The network structure formed by filler-filler interaction was destroyed above 6% strain regardless of the loading of carbon black, because constant storage modulus was shown at the higher strain than 3% for $40{\sim}50phr$ loading of carbon black and at the higher strain than 6% for 60 phr and above loading of carbon black. Little effect on loss modulus was found at the low loading of carbon black, but the peak of loss modulus was shown at 1% strain as the loading of carbon black was increased. Tan ${\delta}$ increased as the loading of carbon black and the strain were increased regardless of the cure system, and maximum tan ${\delta}$ was shown at 2% strain regardless of the loading of carbon black.

  • PDF

Thiazole Type Accelerator Effects on Silane/Silica Filled Natural Rubber Compound upon Vulcanization and Mechanical Properties (Thiazole계 가황촉진제가 실란/실리카 충전 천연고무 컴파운드의 가황 거동 및 기계적 물성에 미치는 영향)

  • Kim, Sung-Min;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.235-244
    • /
    • 2012
  • A thiazole type accelerator MBT (2-mercapto benzothiazole) was added into silica filled natural rubber (NR) compound with various concentrations (0, 1, 2, 3, 4 phr). The effects of MBT on the cure rate, mechanical property, degree of rubber-filler interaction (${\alpha}_F$), crosslinking density, and viscoelastic property ($tan{\delta}$) were investigated. As accelerator concentration increased, the $t_{s2}$ and $t_{90}$ decreased and the crosslinking density and modulus at 300% elongation increased. The tensile strength and elongation increased up to 3 phr and no further increased at 4 phr. The $tan{\delta}$ value measured at room temperature was higher than that of the $70^{\circ}C$. The ${\alpha}_F$ value was not affected by the addition of MBT. The mechanisms for the vulcanization rate were reviewed.

A Study on the Vulcanization Characteristics of SBR/BR Blends Containing Reinforcing Fillers (보강성 충전제가 첨가된 SBR/BR 블렌드의 가황특성에 관한 연구)

  • Lee, Seag
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.274-280
    • /
    • 1998
  • Order of reaction, rate constant, activation energy for vulcanization reaction, crosslinking density, and elastic constant of the network produced by sulfur curing were investigated on the SBR/BR blends containing silica and carbon black under same cure system. The reaction order was shown to be first order regardless of filler types. The carbon black filled rubber compounds showed higher rate constant compared to silica filled compounds. But activation energy appeared to be same regardless of filler type and rubber blend ratio. The crosslinking density and elastic constant is higher in the carbon black filled compound compared to silica filled compounds because of strong interaction between rubber and carbon black. On the other hand, crosslinking density and elastic constant were decreased with increasing the butadine rubber content in rubber blends. From the comparison of combined sulfur content in the vulcanized rubber, sulfur content in the silica filled compound become constant 20min later after reaction initiates but sulfur content in the carbon black filled compound become constant 10min later after reaction starts. The silica compound has a longer induction time ($t_2$) and optimum cure time($t_{90}$) compared to those of the carbon black filled compound.

  • PDF

Effects of Thiuram, Thiazole, and Sulfenamide Accelerators on Silica Filled Natural Rubber Compound upon Vulcanization and Mechanical Properties (Thiuram, Thiazole, Sulfenamide계 가황촉진제가 실리카로 충진된 천연고무 복합소재의 가황 및 물성에 미치는 영향)

  • Choi, Changyong;Kim, Seong-Min;Park, Young-Hoon;Jang, Mi-Kyeong;Nah, Jae-Woon;Kim, Kwang-Jea
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.411-415
    • /
    • 2011
  • Various types of accelerators, thiuram (TMTD, DPTT), thiazole (MBT, MBTS), and sulfenamide (CBS, NOBS) are added into a silica filled natural rubber compound. Their effects on vulcanization and mechanical properties are investigated. TMTD showed the fastest vulcanization rate, the higer maximum torque ($T_{max}$), and the excellent mechanical properties (300% modulus, tensile strength, elongation). MBT and MBTS showed an intermediate vulcanization rate between thiuram and sulfenamide type and added ones, and also showed the lower $T_{max}$ and mechanical properties compared to that of other compounds. Finally, NOBS showed the slowest vulcanization rate and the lower mechanical property but the moderate $T_{max}$.

디엔제3성분단위체(第三成分單位體)가 EPDM가황체(加黃體)에 미치는 영향(影響)

  • Baek, Nam-Cheol
    • Elastomers and Composites
    • /
    • v.14 no.3
    • /
    • pp.161-168
    • /
    • 1979
  • 이 논문(論文)의 목적(目的)은 열적안정성(熱的安定性) 및 내노화성면(耐老化性面)에 있어서 디엔제3성분단위체(第三成分單位體)(diene termonomer)의 각각(各各)의 종류(種類)가 EPDM의 중합체(重合體)의 성질(性質)에 미치는 효과(效果)를 구명(究明)하는데 있다. 제3성분단위체(第三成分單位體) 5종(種)으로 각각(各各) 다음과 같다. 즉, ethylidene norbonene(ENB), butadiene(BD), dicyclopentadiene(DCPD), methyltetrahydroindene (MTHI) 및 1,4-hexadiene(HD)이다. 이들을 써서 만든 각각(各各)의 EPDM은 동(同)몰의 불포화도(不飽和度)로 만들어졌다. 또한 가황계(加黃系)는 동일(同一)한 황/촉진제계(黃/促進劑系)를 사용(使用)하였다. ENB-EPDM이 순(純)고무배합체(配合體) 및 충전제함유배합체(充塡劑含有配合體)의 가황(加黃)에 있어서 모두 함께 가장 빠른 가황속도(加黃速度)를 보였다. HD-EPDM은 순(純)고무배합체(配合體)에서 가황속도(加黃速度)가 가장느렸으나 충전제함유배합물(充塡劑含有配合物)에서는 DCPD-EPDM보다는 발랐다. BD-EPDM을 제외(除外)한 이들 중합체(重合禮)는 거의 같은 초기가교밀도(初期架橋密度)를 갖는다. 가교밀도(架橋密度) 및 가교형(架橋型)을 분석(分析)하여 보면 BD-EPDM 쇄(鎖)에서 부타디엔 단위(單位)는 블럭을 이루고 있다. 또한 HD-EPDM은 순(純)고무가황체(加黃體) 및 충전제배합가황체(充塡劑配合加黃體)에 있어서 원가교결합(原架橋結合)의 50%가 monosulfide의 구조(構造)를 가지고있다. 이외(外)의 4종(四種)의 EPDM 폴리머는 보다 낮은 monosulfide구조를 가진다. $177^{\circ}C(350^{\circ}F)$의 노화온도(老化溫度)에서 ENB 및 HD폴리머는 약(約) 65% monosulfide 가교(架橋) 및 거의 동일(同一)한 파괴에너지값$(E_b)$을 가진다. 그러나 1,4HD의 원가교(原架橋)의 monosulfide 구조함량(含量)이 보다 높다고 해서 그의 내노화성(耐老化性)이 다른 폴리머보다 더 좋다고는 생각되지 않는다. DCPD는 $177^{\circ}C(350^{\circ}F)$의 노화온도(老化溫度)에서 똑같은 monosulfide가교(架橋)를 가지나 노화온도(老化溫度)가 $259^{\circ}C(500^{\circ}F)$로 높아짐에 따라 monosulfide 함량(含量)도 증가(增加)한다. $550^{\circ}F(287.7^{\circ}C)$의 노화온도(老化溫度)에서는 EPDM폴리머의 모든 가교(架橋)가 monosulfide구조가 되나 전가교밀도(全架橋密度) 및 $E_b$ (신장률(伸長率), 절단시(切斷時)의)는 대단(大端)히 낮은 것으로 나타나는데 이것은 산화(酸化)에 의한 노화(劣化)에 기인(基因)되는 것으로 보인다. 질소기류(窒素氣流)속에서의 TGA의 분석결과(分析結果)를 보면 EPDM 가황체(加黃體)는 $800\sim935^{\circ}F(427\sim502^{\circ}C)$의 온도범위(溫度範圍)에서 분해(分解)되며 공기중(空氣中)에서는 $750\sim935^{\circ}F$ 범위(範圍)에서 분해(分解)한다.

  • PDF