• 제목/요약/키워드: 가짜 계정

검색결과 3건 처리시간 0.02초

통계 및 이미지 데이터를 활용한 가짜 SNS 계정 식별 기술 (Fake SNS Account Identification Technique Using Statistical and Image Data)

  • 유승연;신영서;방채운;전찬준
    • 스마트미디어저널
    • /
    • 제11권1호
    • /
    • pp.58-66
    • /
    • 2022
  • 인터넷 기술이 발전함에 따라 SNS 사용자가 늘어나고 있다. SNS의 대중화가 진행되면서 소셜 네트워크의 영향력과 익명성을 활용한 SNS형 범죄가 나날이 증가하고 있는 추세이다. 본 논문에서는 인스타그램에서 SNS형 범죄에 주로 이용되는 가짜 계정 분류를 위해 통계 데이터와 이미지 데이터를 이용하여 각각 기계학습 및 딥러닝(deep learning) 기법을 활용한 가짜 계정 분류 방법을 제안한다. 모델 학습에 사용된 SNS 계정 데이터는 자체적으로 수집하였으며, 수집된 데이터는 통계 데이터 및 이미지 데이터에 기반한다. 통계 데이터의 경우에는 기계학습 및 다층 퍼셉트론 기반으로 학습을 진행하였고, 이미지 데이터의 경우에는 합성곱 신경망(Convolutional Neural Network, CNN) 기반으로 학습을 진행하였다. 학습을 진행한 결과 계정 분류에 대하여 정확도가 전반적으로 높게 나온 것을 확인하였다.

CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지 (Fake News Detection Using CNN-based Sentiment Change Patterns)

  • 이태원;박지수;손진곤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권4호
    • /
    • pp.179-188
    • /
    • 2023
  • 최근 가짜뉴스는 뉴스 콘텐츠 형식을 가장하고 중요한 사건이 발생할 때마다 등장하여 사회적 혼란을 초래한다. 이에 가짜뉴스를 탐지하기 위한 연구로 인공지능 기술이 사용된다. 자연어 처리를 통해 가짜뉴스를 자동으로 인지 및 차단하거나, 네트워크 인과 추론과 결합함으로써 허위 정보를 확산시키는 소셜미디어 인플루언스 계정을 감지하는 등의 가짜뉴스 탐지 접근법이 딥러닝을 통해 구현될 수 있었다. 그러나 가짜뉴스 탐지는 여러 자연어 처리 분야 중에서도 해결이 어려운 문제로 분류된다. 가짜뉴스가 가지는 형식 및 표현의 다양성으로 특성 추출의 난도가 높고, 뉴스가 속한 범주에 따라 하나의 특성이 서로 다른 의미를 가질 수도 있는 등 다양한 한계점이 존재한다. 본 논문에서는 가짜뉴스를 탐지하기 위한 추가적인 식별 기준으로 감성 변화 패턴을 제시한다. 합성곱 신경망을 가짜뉴스 데이터 세트에 적용하여 콘텐츠 특성에 기반한 분석을 수행하고, 감성 변화 패턴을 추가로 분석함으로써 성능이 개선된 모델을 제안한다. 뉴스를 구성하는 문장에 대하여 감성 극성을 산출하고 장단기 메모리를 적용함으로써 문장 순서에 의존적인 결괏값을 얻을 수 있다. 이를 감성 변화의 패턴으로 정의하고 뉴스의 콘텐츠 특성과 결합하여 가짜뉴스 탐지를 위한 제안 모델의 독립변수로 활용한다. 제안 모델과 비교 모델을 딥러닝으로 학습시키고 가짜뉴스 데이터 세트를 이용한 실험을 진행하여 감성 변화 패턴이 가짜뉴스 탐지 성능을 개선할 수 있음을 확인한다.

웹 기반 디바이스 핑거프린팅을 이용한 온라인사기 및 어뷰징 탐지기술에 관한 연구 (A Study on Online Fraud and Abusing Detection Technology Using Web-Based Device Fingerprinting)

  • 장석은;박순태;이상준
    • 정보보호학회논문지
    • /
    • 제28권5호
    • /
    • pp.1179-1195
    • /
    • 2018
  • 최근 PC, 태블릿, 스마트폰 등 다중 접속환경을 통하여 웹 서비스에 대한 다양한 공격이 발생하고 있다. 이런 공격은 웹 서비스의 취약점을 통해 온라인 사기거래, 계정의 탈취 및 도용, 부정로그인, 정보 유출 등 여러 가지 후속 피해를 발생시키고 있다. Fraud 공격을 위한 새로운 가짜 계정의 생성, 계정도용 및 다른 이용자 이름 또는 이메일 주소를 사용하면서 IP를 우회하는 방법 등은 비교적 쉬운 공격 방법임에도 불구하고 이런 공격을 탐지하고 차단하는 것은 쉽지 않다. 본 논문에서는 웹 기반의 디바이스 핑거프린팅을 이용하여 웹 서비스에 접근하는 디바이스를 식별하여 관리함으로써 온라인 사기거래 및 어뷰징을 탐지하는 방법에 대해 연구하였다. 특히 디바이스를 식별하고 이를 스코어링 하여 관리는 것을 제안하였다. 제안 방안의 타당성 확보를 위하여 적용 사례를 분석하였고, 온라인 사기의 적극적인 대응과 이용자 계정에 대한 가시성을 확보할 수 있어 다양한 공격에 효과적으로 방어할 수 있음을 증명하였다.