• Title/Summary/Keyword: 가진 진 동수

Search Result 6, Processing Time 0.024 seconds

A Simulation of Forcing Function for the Piping Vibration in Petrochemical Plants (석유화학 플랜트에서 배관 가진 함수의 시뮬레이션에 관한 연구)

  • 민선규;최명진;김경훈
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • For the simulation of piping vibrations in petrochemical plants, forcing functions mainly depend upon the equipment working mechanism and vibration resources in the piping systems. In general, harmonic function is used to simulate rotary equipment. Mechanical driving frequencies, wave functions, and response spectrum are used to simulate reciprocating compressors, surge vibration of long transfer piping, and seismic/wind vibration, respectively. In this study, the general suggestions for forcing functions were reviewed and proposed the forcing function to simulate the spray injection system inside the pipe in which two different fluids are distributed uniformly. To confirm the results, the scheme was applied for a real piping system. The vibration mode of the real system was consistent with the 4th mode (26.725 Hz) obtained by simulation using the forcing function presented in this study.

  • PDF

Development of high-precision high-voltage CCPS (4세대 가속기 고정밀 고전압CCPS 개발)

  • Moon, Yong-Jo;Park, Soung-Soo;Kim, Sang-Hee;Kwon, S.J.;Jang, S.D.;Lee, B.J.;Lee, H.S.;Kang, H.S.;Whaung, J.Y.;Kim, D.S.;Lee, S.Y.;Shin, H.S.;Jang, K.Y.;Roh, S.C.
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.172-173
    • /
    • 2012
  • 포항가속기 연구소에서는 4세대 가속기의 전자를 가속시키기 위해서 100ppm(0.01%) 이하의 고전압 안정도를 가진 200MW 펄스 모듈레이터가 요구된다. 그러므로 본 연구소에서는 고전압 안정도를 가진 고정밀 고전압 CCPS를 일반 CCPS와 병행하여 산업체와 함께 공동 개발을 진행하였다. 개발된 일반 CCPS의 사양은 50 kV, 30 kJ/sec, 600mA, 1000ppm이하이고, 고정밀 CCPS의 사양은 50 kV, 5 kJ/sec, 100mA, 100ppm이하이다. 본 논문에서는 CCPS의 개발 및 실제 모듈레이터에 설치하여 시험한 결과를 발표하고자 한다.

  • PDF

Buckling and Vibration of Laminated Composite Non-Circular Cylindrical Shells (비원형 단면을 가진 적층복합재료원통셸의 좌굴 및 진동해석)

  • 이영신;안상균;이우식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.807-819
    • /
    • 1989
  • Buckling and vibration of laminated non-circular cylindrical shells with constant thickness and simply supported boundary condition is considered. Governing equations are derived based on the Donnell and Flugge shell theory and Galerkin method is applied for the numerical analysis. Comparisons are made between present results and others. Variations of frequency parameter and buckling load parameter on the change of stacking angle, eccentricity parameter and shell theories are investigated. Conclusion of this study is as follows: (1) General solutions of buckling and vibration of laminated non-circular cylindrical shell are obtained. (2) Frequency parameter is decreased as the initial axial load is increased. (3) In general, frequency and buckling load parameter of laminated non-circular cylindrical shells are decreased as increasing of eccentricity parameter and stacking angle.

Stability Analysis of Axially Moving Beam with Attached Mass (축방향으로 이송되는 부가질량을 가진 보의 안정성 해석)

  • Hur, Kwan-Do;Son, In-Soo;Ahn, Sung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.56-61
    • /
    • 2012
  • The dynamic instability and natural frequency of axially moving beam with an attached mass are investigated. Thus, the effects of an attached mass on the stability of the moving beam are studied. The governing equation of motion of the moving beam with an attached mass is derived from the extended Hamilton's principle. The natural frequencies are investigated for the moving beams via the Galerkin method under the simple support boundary. Numerical examples show the effects of the attached mass and moving speed on the stability of moving beam. Moreover, the lowest critical moving speeds for the simple supported conditions have been presented. The results can be used in the analysis of axially moving beams with an attached mass for checking the stability.

The Development of Pulp Mold Tray for Melon Packaging (멜론 포장용 펄프몰드 난좌 개발)

  • Choi, Seung Ryul;Jung, Hoon;Choi, Dong Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.3
    • /
    • pp.125-131
    • /
    • 2013
  • In order to protect agricultural products against damage by physical load, various shock absorbing materials is used. As the demands of environment protection increase, the use of plastic materials have been restricted. On the other hand, Pulp mold products have some benefits - easy manufacturing, superior shock absorbing and eco-friendly. In order to develop pulp mold tray for melon packaging as shock absorbing packaging material, we investigated physical properties and vibration transmission characters of 180, 200 and 220 g pulp mold tray for melon. As the weight of pulp increased, compression strength and shock absorbing performance increased, while vibration transmissibility decreased. Especially in case of 180g pulp mold tray, it is not suitable for melon packaging because the transmitted vibration acceleration was higher than the forced vibration acceleration. And 200g pulp mold tray is suitable for melon packaging because the vibration transmissibility was lowest in three trays. And the vibration acceleration transmitted to the melon in edge of pulp mold tray was higher than to the melon in center of pulp mold tray. As the result of the simulated transportation test, the firmness of melon packaging using pulp mold tray was higher than that of conventional packaging. Therefore, these results suggest that pulp mold tray packaging could be suitable for melon packaging.

  • PDF

Study on 222Rn reduction rate in boiling groundwater (가열에 의한 지하수 중 222Rn 제거율 고찰)

  • Kim, MoonSu;Kim, Hyun-Koo;Park, Sun-Wha;Kim, Hyoung-Seop;Ju, Byoung-Kyu;Kim, Dong-Su;Cho, Sung-Jin;Yang, Jae-Ha;Kwon, Oh-Sang;Kim, Tae-Seung
    • Analytical Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.353-360
    • /
    • 2015
  • Boiling is an efficient removal method to reduce radon in groundwater when ventilating indoor air. 13 groundwater samples with various radon concentrations were used to evaluate the reduction rate of radon with heating temperature and time. The groundwater samples were obtained by Bladder pump and on-situ measurements such as dissolved oxygen (DO) and hydrogen concentration (pH) and so on were carried out by a flow cell system isolated from the ambient atmosphere environment. All samples for measuring radon in groundwater were analyzed by liquid scintillation counter (LSC). The experiment result showed that increasing groundwater temperature enhanced radon removal rate but the initial radon concentration with high level lowered the removal rate. This means that radon reduction in groundwater by heating needs more heating energy and longer heating time with radon concentrations. Radon removal rate in groundwater, therefore, mainly depends on the initial radon concentration, heating temperature, and heating time.