• 제목/요약/키워드: 가중 비선형 최적화

검색결과 4건 처리시간 0.024초

유전자 알고리즘 최적화 신경망을 이용한 학습 (A Learning Using GA Optimized Neural Networks)

  • 윤여창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.27-29
    • /
    • 2008
  • 시스템 분석에 주로 사용하는 자료 중에는 비선형 자료와 시계열 등이 있다. 이들 자료는 그 함축적인 관계가 매우 복잡하여 전통적인 통계분석 도구로 분석하는데 어려움이 많다. 본 연구에서는 현실 세계에서 다양하게 나타나는 복잡성을 다루기 위하여 하이브리드 진화 신경망 모델링 접근 방법으로 자료를 모형화 하고 이를 통한 학습의 적합도를 살펴본다. 비선형 자료 등을 모형화하기 위한 학습은 역전파 신경망 기법을 이용한다. 학습의 효율을 높이기 의해서 격자감소 학습 알고리즘과 함께 이용하는 유전자 알고리즘은 네트워크 구조를 최적화 시킬 수 있는 초기가중값을 이용한 전역 최소값을 찾는데 이용한다. 학습 결과를 통해 제안된 하이브리드형 접근방법의 학습이 보다 효율적임을 살펴보기 위하여 유전자 알고리즘으로 최적화된 신경망 학습 알고리즘을 비선형 모의자료의 학습에 적용하여 보았다.

달 탐사 로버의 적응형 움직임 가중치에 따른 스테레오 준직접방식 비주얼 오도메트리 (Stereo Semi-direct Visual Odometry with Adaptive Motion Prior Weights of Lunar Exploration Rover)

  • 정재형;허세종;박찬국
    • 한국항공우주학회지
    • /
    • 제46권6호
    • /
    • pp.479-486
    • /
    • 2018
  • 위성항법시스템이 없는 달 표면에서 탐사 로버의 신뢰성 있는 항법성능을 확보하기 위해 관성측정장치나 카메라와 같은 추가적인 센서를 활용한 항법 알고리즘이 필수적이다. 일례로 미국의 화성 탐사 로버에 스테레오 카메라를 이용한 비주얼 오도메트리(VO)가 성공적으로 사용된 바 있다. 본 논문에서는 달 유사환경의 스테레오 흑백 이미지를 입력받아 달 탐사 로버의 6 자유도 움직임을 추정하였다. 제안하는 알고리즘은 희소 이미지 정렬 기반의 준직접방식 VO를 통해 연속된 이미지간의 상대 움직임을 추정한다. 또한 비선형성에 취약한 직접방식 VO를 보완하고자 최적화 시 로버의 움직임에 따른 가중치를 비용 함수에 고려하였고, 그 가중치는 이전 단계에서 계산된 포즈의 선형 함수로 제안한다. 본 논문에서 제안하는 로버의 움직임에 따른 가중치를 통해 실제 달 환경의 특성을 반영하는 토론토 대학의 달 유사환경 데이터셋에서 VO 성능이 향상됨을 확인하였다.

Meta-Heuristic Algorithms를 이용한 확률분포의 매개변수 추정 (Parameters Estimation of Probability Distributions Using Meta-Heuristic Algorithms)

  • 윤석민;이태삼;강명국;정창삼
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.464-464
    • /
    • 2012
  • 수문분야에 있어서 빈도해석의 목적은 특정 재현기간에 대한 발생 가능한 수문량의 규모를 파악하는데 있으며, 빈도해석의 정확도는 적합한 확률분포모형의 선택과 매개변수 추정방법에 의존하게 된다. 일반적으로 각 확률분포모형의 특성을 대표하는 매개변수를 추정하기 위해서는 모멘트 방법, 확률가중 모멘트 방법, 최대우도법 등을 이용하게 된다. 모멘트 방법에 의한 매개변수 추정은 해를 구하기 위한 과정이 단순한 반면, 비대칭형의 왜곡된 분포를 갖는 자료들에 대해서는 부정확한 결과를 나타내게 된다. 확률가중 모멘트 방법은 표본의 크기가 작거나 왜곡된 자료일 경우에도 비교적 안정적인 결과를 제공하는 반면, 확률 가중치가 정수로만 제한되는 단점을 갖고 있다. 그리고 대수 우도함수를 이용하여 매개변수를 추정하게 되는 최우도법은 가장 효율적인 매개변수 추정치를 얻을 수 있는 것으로 알려져 있으나, 비선형 연립방정식으로 표현되는 해를 구하기 위해서는 Newton-Raphson 방법을 사용하는 등 절차가 복잡하며, 때로는 수렴이 되지 않아 해룰 구하지 못하는 경우가 발생되게 된다. 이에 반해, 최근의 Genetic Algorithm, Ant Colony Optimization 및 Simulated Annealing과 같은 Meta-Heuristic Algorithm들은 복잡합 공학적 최적화 문제 있어서 효율적인 대안으로 주목받고 있으며, Hassanzadeh et al.(2011)에 의해 수문학적 빈도해석을 위한 매개변수 추정에 있어서도 그 적용성이 검증된바 있다. 본 연구의 목적은 연 최대강수 자료의 빈도해석에 적용되는 확률분포모형들의 매개변수 추정을 위해 Meta-Heuristic Algorithm을 적용하고자 함에 있다. 따라서 본 연구에서는 매개변수 추정을 위한 방법으로 Genetic Algorithm 및 Harmony Search를 적용하였고, 그 결과를 최우도법에 의한 결과와 비교하였다. GEV 분포를 이용하여 Simulation Test를 수행한 결과 Genetic Algorithm을 이용하여 추정된 매개변수들은 최우도법에 의한 결과들과 비교적 유사한 분포를 나타내었으나 과도한 계산시간이 요구되는 것으로 나타났다. 하지만 Harmony Search를 이용하여 추정된 매개변수들은 최우도법에 의한 결과들과 유사한 분포를 나타내었을 뿐만 아니라 계산시간 또한 매우 짧은 것으로 나타났다. 또한 국내 74개소의 강우관측소 자료와 Gamma, Log-normal, GEV 및 Gumbel 분포를 이용한 실증연구에 있어서도 Harmony Search를 이용한 매개변수 추정은 효율적인 매개 변수 추정치를 제공하는 것으로 나타났다.

  • PDF

핀휜이 부착된 회전하는 냉각유로의 최적설계 (Shape Optimization of a Rotating Cooling Channel with Pin-Fins)

  • 문미애;아프잘 후세인;김광용
    • 대한기계학회논문집B
    • /
    • 제34권7호
    • /
    • pp.703-714
    • /
    • 2010
  • 본 연구에서는 크리깅 기법을 이용하여 엇갈린 핀휜이 부착된 회전하는 내부냉각유로의 형상 최적화를 수행하였다. 냉각유로 형상의 여러 매개변수 중 핀의 지름과 높이의 비, 핀의 지름과 핀과 핀 사이의 거리의 비를 최적설계를 위한 설계변수로 선택하였다. 열전달 관련 목적함수와 마찰손실 관련 목적함수를 가중계수를 이용하여 선형적으로 결합한 목적함수를 정의하였다. 크리깅 모델을 구축하기 위해 라틴하이퍼큐브 샘플링기법에 의해 생성된 20개 실험점에서 목적함수가 SST난류모델을 사용한 삼차원 레이놀즈평균 나비어-스톡스(RANS) 유동해석법에 의해 계산되었다. 크리깅 기법을 통하여 예측된 목적함수값은 RANS해석을 이용해 계산된 값과 매우 작은 오차 범위 내에서 일치하였으며, 최적설계를 통해 목적함수가 11% 감소하는 결과를 얻었다.