본 연구는 공간상에서 전파를 이용하여 원하는 목표물의 도래 방향을 추정 한다. 도래방향 추정은 수신 배열 안테나들로 입사하는 신호들 중에서 원하는 목표물의 위치를 찾는 것이다. 본 연구에서는 도래방향 추정의 고 분해능 MUSIC알고리즘과 비용함수를 사용하여 목표물에 대한 도래방향을 추정하였고, 최적의 가중치를 계산하였다. 모의실험을 통하여 목표물 도래 방향 추정에서 기존 ESPRIT 알고리즘과 제안 알고리즘의 성능을 비교 분석 하였다. 목표물 도래 방향 추정에서 제안한 알고리즘이 기존의 ESPRIT 알고리즘보다 도래 방향 추정 능력이 향상되었다.
본 연구는 국내 산사태 발생 데이터를 기반으로 시뮬레이션 모델을 머신러닝 기법을 통해 학습시켜 산사태의 토석류 흐름을 구현하는 알고리즘에 대한 연구이다. 전통적인 프로그래밍을 통한 산사태 시뮬레이션 모델 개발을 해당 시스템에 더 많은 고도의 물리학 법칙을 통합 적용시켜 토석류의 흐름을 공학적으로 재현해내는데 중점을 두고 개발이 진행되지만, 본 연구에서 다루는 머신러닝 기법을 통한 산사태 시뮬레이션 모델 개발의 경우 시스템에 입력되는 데이터를 기반으로한 학습을 통하여 토석류 흐름에 영향을 미치는 변수와 파라메터를 산출하고 정의는데 중점을 두고 개발이 진행된다. 본 연구에서 산사태 시뮬레이션 모델 개발에 활용하는 머신러닝 알고리즘은 강화학습 알고리즘으로 기존 산사태 발생 지점을 기반으로 에이전트를 설정해 시간에 따라 시뮬레이션의 각 스텝에서 토석류의 흐름 즉 액션을 환경에 따른 가중치를 기준으로 산정하게 된다. 여기서 환경에 따른 가중치는 시뮬레이션 모델에 정의된 메서드에 따라 산정된다. 시간이 목표값에 도달하여 결과가 출력되면 출력된 결과와 해당 산사태 발생 지점의 실제 산사태 피해 지역 데이터 즉 시뮬레이션 결과 이상치와의 비교를 통하여 시뮬레이션을 평가하게 된다. 이러한 평가는 시뮬레이션 데이터와 실제 데이터간의 유사도 비교를 통해 손실률을 도출하게 되고 이러한 손실률을 경사하강법등의 최적화 알고리즘을 통해 최소화 하여 입력된 데이터를 기반으로한 최적의 토석류 흐름 구현 알고리즘을 도출한다.
본 연구에서는 통신망 노드에서의 큐잉 노드에서의 큐잉 지연 성능 보장을 위한 스케쥴링 알고리즘을 제안하였다. GPS (Generalized Processor Sharing) 개념을 확장하여 트래픽 클래스 단위의 서비스 커브를 정의하고 정의된 서비스 커브들 간의 관계를 규정짓는 시스템 방정식을 유도하였다 이러한 시스템 방정식을 기반으로 GPS 서버에서 정의 되는 세션별 가중치 값을 요구된 지연 성능과 트래픽 파라미터를 사용하여 구하였다 이와같이 유도된 가중치 값을 적용하여 GPS 알고리즘의 변형인 소위 '대역할당 알고리즘'을 소개하였다 유도된 시스템 방정식은 대역할당 알고리즘이 구현되는 서버 동작의 구체적 모델링이다 또한 대역할당 알고리즘에 수반되는 호 수락 제어조건도 도출 함으로써 수용된 모든세션들의 결정적 지연성능품질이 보장될수 있도록 하였다 가중치 값은 고정된 값이 아니고 망 노드의 상태에 따라 역동적으로 튜닝 되도록 정의되었으며 이로써 대역폭 사용의 사용의 효율성이 중대되는 특성을 갖는다.
단백질 시퀀스처럼 가중치를 가지는 스트링에 대한 탐색 알고리즘을 개발한다. ${\sum}$를 알파벳이라 하고 모든 $a{\in}{\sum}$에 대해서 무게 ${\mu}(a)$가 주어진다고 하자. 스트링 $A=a_1a_2…a_n\; 에서 (단, 모든 ai{\in}{\sum})$, 서브스트링 $A(i.j)=a_ia_{i+1}…a_j$로 정의하면, 이것의 무게는 ${\in}(A(i.j))={\in}(a_i)+{\in}(a_i+1)+…+{\in}(a_j)$가 된다. 다루고자하는 문제는 스트링 A를 사전 처리하여 탐색 자료구조를 만드는데, 이 자료구조는 나중에 질문 무게 M이 주어진 경우, $M={\in}(A(i,j))$인 서브스트링 A(i,j)가 있는가 라는 질문에 응답하는데 사용된다. 본 논문에서는 기존의 결과를 향상시키는 알고리즘을 제시한다. 기존의 알고리즘의 경우 O(n) 만큼의 메모리를 사용하는 탐색 자료구조를 이용하여 $0(\frac{nlog\;logn}{log\; n})$ 시간에 질문응답을 하였으나, 본 논문의 알고리즘은 질문 응답시간은 그대로 유지하면서 메모리만 $0(\frac{n}{log\; n})$으로 줄인다.
다층 구조 신경망에서 널리 사용되는 오류 역전파 알고리즘은 초기 가중치와 불충분한 은닉층의 노드 수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ART-1에서 경계 변수의 설정에 따라 인식률이 저하되는 문제점을 개선하기 위하여 ART-1과 퍼지 단층 지도 학습 알고리즘을 결합한 ATR-1 기반 퍼지 다층 지도 학습 알고리즘을 제안 한다. 자가 생성을 이용한 제안된 퍼지 지도 학습 알고리즘은 입력층에서 은닉층으로 노드를 생성시키는 방식은 ART-1을 적용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 주민등록증 영상을 대상으로 실험한 결과, 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상도 개선되었다.
모바일 에드혹 네트워크는 고정된 인프라의 도움 없이 이동 노드만으로 구성되므로 네트워크의 독립성과 융통성을 높일 수 있으나, 노드의 참여와 이탈의 자유로움 때문에 네트워크를 운영할 때, 망의 형태를 안정적으로 관리하는 것은 무엇보다도 중요하고 어려운 문제이다. 따라서 이러한 문제를 해결하기 위하여. 관리와 안전성에 중점을 둔 분산가중치 클러스터링 알고리즘을 제안한다. 제안된 알고리즘은 초기클러스터 형성시에는 기존의 분산가중치 알고리즘을 사용하고 클러스터 형성 후 이동 노드들로 인해 발생되는 재클러스터링을 최소한으로 줄이기 위해 부 클러스터 헤드와 분산게이트웨이라는 개념을 사용한다. 성능 검증을 위해 초기의 오버헤드, 재 가입률, 클러스터의 수를 기준으로 기존의 DCA과 WCA 알고리즘과 제안된 알고리즘을 비교, 평가한다.
공간 데이터 마이닝이란 공간 데이터베이스 내에 함축적으로 존재하는 흥미 있는 관계와 특징을 발견하는 과정이다. 많은 공간 클러스터링 알고리즘이 개발 되었으나, 공간 속성을 기준으로 클러스터링을 수행하면서 동시에 오브젝트의 비 공간적 속성에 대하여 가중치를 부여하는 방법에 대한 연구는 부족하였다. 본 논문은 새로운 공간 클러스터링 알고리즘인 DBSCAN-W를 제안하였다. DBSCAN-W는 밀도 기반 클러스터링 알고리즘인 DBSCAN을 확장한 알고리즘이다. 기존의 DBSCAN에서는 클러스터링을 위해 오브젝트의 위치 속성만을 고려한 반면, DBSCAN-W는 오브젝트의 위치 속성 뿐 아니라 주어진 응용과 관련된 오브젝트의 비 공간 속성들을 함께 고려한다. DBSCAN-W에서 각 오브젝트들은 다양한 크기의 원으로 표현되는 영역을 갖는다. 이때 원의 반지름은 해당 응용 시스템에서 오브젝트가 갖는 중요도를 반영한다 또한 실험을 통하여 DBSCAN-W알고리즘이 사용자의 의도를 반영한 다양한 클러스터를 효과적으로 생성하는 결과를 보였다.
영상처리는 자동화, 인공지능 시스템에서 물체 추적, 객체 인식 및 분류와 같은 중요한 부분을 담당하고 있으며, IoT 기술과 자동화의 관심이 높아짐에 따라 중요성이 강조되고 있다. 하지만 영상의 경계선과 같이 세밀한 데이터가 요구되는 시스템에서는 정밀한 잡음제거 알고리즘이 요구되고 있으나, 기존 알고리즘은 필터링 과정에서 블러링 현상이 강하게 나타나는 단점을 가지고 있다. 따라서 본 논문에서는 필터링 과정의 정보손실을 최소화하기 위해 화소값 분포패턴에 기반한 필터링 알고리즘을 제안한다. 제안한 알고리즘은 입력영상의 화소값에 대해 이웃한 화소값의 분포패턴을 구한다. 그리고 분포패턴을 바탕으로 가중치 마스크를 계산하며, 필터링 마스크에 적용하여 최종출력을 계산한다. 제안한 알고리즘은 기존 방법에 비해 잡음제거 특성이 우수하였으며, 블러링 현상을 최소화하며 영상을 복원하였다.
최근 들어, 디지털 영상처리 장치에 대한 수요가 급격히 증대되면서 영상의 우수한 화질이 요구되고 있다. 그러나 여러 가지 원인에 의해 잡음이 추가되어 영상을 훼손시킨다. 따라서 잡음제거에 대한 필요성이 대두되고 있으며, 잡음제거 기술은 주요한 연구 분야가 되었다. 영상은 AWGN(additive white Gaussian noise)에 의해 많이 훼손되며, 본 논문에서는 AWGN을 제거하기 위해, 에지보호를 위한 개선된 알고리즘을 제안하였다. 제안한 알고리즘은 먼저 공간거리 차이 정보를 고려한 가중치 필터와 적응 가중치 필터로 처리한 결과값의 평균과 마스크내의 분산과 추정된 잡음분산의 관계식에 의해 처리된 값을 합하여, 영상의 최종출력값을 구한다. 따라서 제안한 방법은 우수한 잡음제거 및 에지보존 특성을 나타내었고 영상의 화질을 개선하였다.
이 논문에서는 먼저 디지털 하프토닝 영상을 생성하는 기존의 방법들과 DCT 변환에 대해서 설명한다. 그런후에 DCT 변환에 근간을 둔 새롭고 단순한 하프토닝 알고리즘을 제안한다. 이 논문은 제안한 알고리즘을 검정하기 위해서 실현 가능성 검증을 수행한다. 그래서 DCT 계수의 가중치를 조절하여 생성된 여러 가지 영상들을 평가하였다. 실험을 통해서 단순한 이상적인 계단 함수 형태의 가중치를 사용하는 것보다는 램프 함수 형태의 가중치를 사용하면 더 좋은 결과를 얻었다. 단순한 응용분야로서 MPEG 비디오에 제안한 알고리즘을 적용하여 하프토닝 비디오를 생성할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.