• Title/Summary/Keyword: 가중치평균

Search Result 595, Processing Time 0.025 seconds

Metabolic risk and nutritional state according to breakfast energy level of Korean adults: Using the 2007~2009 Korea National Health and Nutrition Examination Survey (한국 성인의 아침식사 에너지 수준에 따른 대사적 위험과 영양상태: 2007~2009년 국민건강영양조사 자료 이용)

  • Jang, So-Hyoun;Suh, Yoon Suk;Chung, Young-Jin
    • Journal of Nutrition and Health
    • /
    • v.48 no.1
    • /
    • pp.46-57
    • /
    • 2015
  • Purpose: The aim of this study was to determine an appropriate energy level of breakfast with less risk of chronic disease for Korean adults. Methods: Using data from the 2007~2009 Korean National Health & Nutrition Examination Survey, from a total of 12,238 adults aged 19~64, the final 7,769 subjects were analyzed except subjects who were undergoing treatment for cancer or metabolic disorder. According to the percent of breakfast energy intake versus their estimated energy requirement (EER), the subjects were divided into four groups: < 10% (very low, VL), 10~20% (low, L), 20~30% (moderate, M), ${\geq}30%$ (sufficient, S). All data were analyzed on the metabolic risk and nutritional state after application of weighted value and adjustment of sex, age, residential area, income, education, job or jobless, and energy intake using a general linear model or logistic regression. Results: The subjects of group S were 16.9% of total subjects, group M 39.2%, group L 37.6%, and group VL 6.3%. The VL group included more male subjects, younger-aged (19 to 40 years), urban residents, higher income, higher education, and fewer breakfasts eaters together with family members. Among the 4 groups, the VL group showed the highest waist circumference, while the S group showed the lowest waist circumference, body mass index, and serum total cholesterol. The groups of VL and L with lower intake of breakfast energy showed high percent of energy from protein and fat, and low percent of energy from carbohydrate. With the increase of breakfast energy level, intake of energy, most nutrients and food groups increased, and the percentage of subjects consuming nutrients below EAR decreased. The VL group showed relatively higher intake of snacks, sugar, meat and eggs, oil, and seasonings, and the lowest intake of vegetable. Risk of obesity by waist circumference was highest in the VL group by 1.90 times of the S group and the same trend was shown in obesity by BMI. Risk of dyslipidemia by serum total cholesterol was 1.84 times higher in the VL group compared to the S group. Risk of diabetes by Glu-FBS (fasting blood sugar) was 1.57 times higher in the VL group compared to the S group. Conclusion: The results indicate that higher breakfast energy level is positively related to lower metabolic risk and more desirable nutritional state in Korean adults. Therefore, breakfast energy intake more than 30% of their own EER would be highly recommended for Korean adults.

Development of a split beam transducer for measuring fish size distribution (어체 크기의 자동 식별을 위한 split beam 음향 변환기의 재발)

  • 이대재;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.196-213
    • /
    • 2001
  • A split beam ultrasonic transducer operating at a frequency of 70 kHz to use in the fish sizing echo sounder was developed and the acoustic radiation characteristics were experimentally analyzed. The amplitude shading method utilizing the properties of the Chebyshev polynomials was used to obtain side lobe levels below -20 dB and to optimize the relationship between main beam width and side lobe level of the transducer, and the amplitude shading coefficient to each of the elements was achieved by changing the amplitude contribution of elements with 4 weighting transformers embodied in the planar array transducer assembly. The planar array split beam transducer assembly was composed of 36 piezoelectric ceramics (NEPEC N-21, Tokin) of rod type of 10 mm in diameter and 18.7 mm in length of 70 kHz arranged in the rectangular configuration, and the 4 electrical inputs were supplied to the beamformer. A series of impedance measurements were conducted to check the uniformity of the individual quadrants, and also in the configurations of reception and transmission, resonant frequency, and the transmitting and receiving characteristics were measured in the water tank and analyzed, respectively. The results obtained are summarized as follows : 1. Average resonant and antiresonant frequencies of electrical impedance for four quadrants of the split beam transducer in water were 69.8 kHz and 83.0 kHz, respectively. Average electrical impedance for each individual transducer quadrant was 49.2$\Omega$ at resonant frequency and 704.7$\Omega$ at antiresonant frequency. 2. The resonance peak in the transmitting voltage response (TVR) for four quadrants of the split beam transducer was observed all at 70.0 kHz and the value of TVR was all about 165.5 dB re 1 $\mu$Pa/V at 1 m at 70.0 kHz with bandwidth of 10.0 kHz between -3 dB down points. The resonance peak in the receiving sensitivity (SRT) for four combined quadrants (quad LU+LL, quad RU+RL, quad LU+RU, quad LL+RL) of the split beam transducer was observed all at 75.0 kHz and the value of SRT was all about -177.7 dB re 1 V/$\mu$Pa at 75.0 kHz with bandwidth of 10.0 kHz between -3 dB down points. The sum beam transmitting voltage response and receiving senstivity was 175.0 dB re 1$\mu$Pa/V at 1 m at 75.0 kHz with bandwidth of 10.0 kHz, respectively. 3. The sum beam of split beam transducer was approximately circular with a half beam angle of $9.0^\circ$ at -3 dB points all in both axis of the horizontal plane and the vertical plane. The first measured side lobe levels for the sum beam of split beam transducer were -19.7 dB at $22^\circ$ and -19.4 dB at $-26^\circ$ in the horizontal plane, respectively and -20.1 dB at $22^\circ$ and -22.0 dB at $-26^\circ$ in the vertical plane, respectively. 4. The developed split beam transducer was tested to estimate the angular position of the target in the beam through split beam phase measurements, and the beam pattern loss for target strength corrections was measured and analyzed.

  • PDF

The Ontology Based, the Movie Contents Recommendation Scheme, Using Relations of Movie Metadata (온톨로지 기반 영화 메타데이터간 연관성을 활용한 영화 추천 기법)

  • Kim, Jaeyoung;Lee, Seok-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.25-44
    • /
    • 2013
  • Accessing movie contents has become easier and increased with the advent of smart TV, IPTV and web services that are able to be used to search and watch movies. In this situation, there are increasing search for preference movie contents of users. However, since the amount of provided movie contents is too large, the user needs more effort and time for searching the movie contents. Hence, there are a lot of researches for recommendations of personalized item through analysis and clustering of the user preferences and user profiles. In this study, we propose recommendation system which uses ontology based knowledge base. Our ontology can represent not only relations between metadata of movies but also relations between metadata and profile of user. The relation of each metadata can show similarity between movies. In order to build, the knowledge base our ontology model is considered two aspects which are the movie metadata model and the user model. On the part of build the movie metadata model based on ontology, we decide main metadata that are genre, actor/actress, keywords and synopsis. Those affect that users choose the interested movie. And there are demographic information of user and relation between user and movie metadata in user model. In our model, movie ontology model consists of seven concepts (Movie, Genre, Keywords, Synopsis Keywords, Character, and Person), eight attributes (title, rating, limit, description, character name, character description, person job, person name) and ten relations between concepts. For our knowledge base, we input individual data of 14,374 movies for each concept in contents ontology model. This movie metadata knowledge base is used to search the movie that is related to interesting metadata of user. And it can search the similar movie through relations between concepts. We also propose the architecture for movie recommendation. The proposed architecture consists of four components. The first component search candidate movies based the demographic information of the user. In this component, we decide the group of users according to demographic information to recommend the movie for each group and define the rule to decide the group of users. We generate the query that be used to search the candidate movie for recommendation in this component. The second component search candidate movies based user preference. When users choose the movie, users consider metadata such as genre, actor/actress, synopsis, keywords. Users input their preference and then in this component, system search the movie based on users preferences. The proposed system can search the similar movie through relation between concepts, unlike existing movie recommendation systems. Each metadata of recommended candidate movies have weight that will be used for deciding recommendation order. The third component the merges results of first component and second component. In this step, we calculate the weight of movies using the weight value of metadata for each movie. Then we sort movies order by the weight value. The fourth component analyzes result of third component, and then it decides level of the contribution of metadata. And we apply contribution weight to metadata. Finally, we use the result of this step as recommendation for users. We test the usability of the proposed scheme by using web application. We implement that web application for experimental process by using JSP, Java Script and prot$\acute{e}$g$\acute{e}$ API. In our experiment, we collect results of 20 men and woman, ranging in age from 20 to 29. And we use 7,418 movies with rating that is not fewer than 7.0. In order to experiment, we provide Top-5, Top-10 and Top-20 recommended movies to user, and then users choose interested movies. The result of experiment is that average number of to choose interested movie are 2.1 in Top-5, 3.35 in Top-10, 6.35 in Top-20. It is better than results that are yielded by for each metadata.

Bone mineral density and nutritional state according to milk consumption in Korean postmenopausal women who drink coffee: Using the 2008~2009 Korea National Health and Nutrition Examination Survey (한국 폐경 후 여성 커피소비자에서 우유섭취여부에 따른 골밀도와 영양상태 비교 : 2008~2009년 국민건강영양조사 자료 이용)

  • Ryu, Sun-Hyoung;Suh, Yoon Suk
    • Journal of Nutrition and Health
    • /
    • v.49 no.5
    • /
    • pp.347-357
    • /
    • 2016
  • Purpose: This study investigated bone mineral density and nutritional state according to consumption of milk in Korean postmenopausal women who drink coffee. Methods: Using the 2008~2009 Korean National Health & Nutrition Examination Survey data, a total of 1,373 postmenopausal females aged 50 yrs and over were analyzed after excluding those with diseases related to bone health. According to coffee and/or milk consumption, subjects were divided into four groups: coffee only, both coffee & milk, milk only, and none of the above. All data were processed after application of weighted values and adjustment of age, body mass index, physical activity, drinking, and smoking using a general linear model. For analysis of nutrient intake and bone density, data were additionally adjusted by total energy and calcium intake. Results: The coffee & milk group had more subjects younger than 65 yrs and higher education, urban residents, and higher income than any other group. The coffee only group showed somewhat similar characteristics as the none of the above group, which showed the highest percentage of subjects older than 65 and in a lower education and socio-economic state. Body weight, height, body mass index, and lean mass were the highest in coffee & milk group and lowest in the none of the above group. On the other hand, the milk only group showed the lowest values for body mass index and waist circumference, whereas percent body fat did not show any difference among the groups. The coffee and milk group showed the highest bone mineral density in the total femur and lumbar spine as well as the highest nutritional state and most food group intakes, followed by the milk only group, coffee only group, and none of the above group. In the assessment of osteoporosis based on T-score of bone mineral density, although not significant, the coffee and milk group and milk only group, which showed a better nutritional state, included more subjects with a normal bone density, whereas the none of the above group included more subjects with osteoporosis than any other group. Conclusion: Bone mineral density in postmenopausal women might not be affected by coffee drinking if their diets are accompanied by balanced food and nutrient intake including milk.

A Two-Stage Learning Method of CNN and K-means RGB Cluster for Sentiment Classification of Images (이미지 감성분류를 위한 CNN과 K-means RGB Cluster 이-단계 학습 방안)

  • Kim, Jeongtae;Park, Eunbi;Han, Kiwoong;Lee, Junghyun;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.139-156
    • /
    • 2021
  • The biggest reason for using a deep learning model in image classification is that it is possible to consider the relationship between each region by extracting each region's features from the overall information of the image. However, the CNN model may not be suitable for emotional image data without the image's regional features. To solve the difficulty of classifying emotion images, many researchers each year propose a CNN-based architecture suitable for emotion images. Studies on the relationship between color and human emotion were also conducted, and results were derived that different emotions are induced according to color. In studies using deep learning, there have been studies that apply color information to image subtraction classification. The case where the image's color information is additionally used than the case where the classification model is trained with only the image improves the accuracy of classifying image emotions. This study proposes two ways to increase the accuracy by incorporating the result value after the model classifies an image's emotion. Both methods improve accuracy by modifying the result value based on statistics using the color of the picture. When performing the test by finding the two-color combinations most distributed for all training data, the two-color combinations most distributed for each test data image were found. The result values were corrected according to the color combination distribution. This method weights the result value obtained after the model classifies an image's emotion by creating an expression based on the log function and the exponential function. Emotion6, classified into six emotions, and Artphoto classified into eight categories were used for the image data. Densenet169, Mnasnet, Resnet101, Resnet152, and Vgg19 architectures were used for the CNN model, and the performance evaluation was compared before and after applying the two-stage learning to the CNN model. Inspired by color psychology, which deals with the relationship between colors and emotions, when creating a model that classifies an image's sentiment, we studied how to improve accuracy by modifying the result values based on color. Sixteen colors were used: red, orange, yellow, green, blue, indigo, purple, turquoise, pink, magenta, brown, gray, silver, gold, white, and black. It has meaning. Using Scikit-learn's Clustering, the seven colors that are primarily distributed in the image are checked. Then, the RGB coordinate values of the colors from the image are compared with the RGB coordinate values of the 16 colors presented in the above data. That is, it was converted to the closest color. Suppose three or more color combinations are selected. In that case, too many color combinations occur, resulting in a problem in which the distribution is scattered, so a situation fewer influences the result value. Therefore, to solve this problem, two-color combinations were found and weighted to the model. Before training, the most distributed color combinations were found for all training data images. The distribution of color combinations for each class was stored in a Python dictionary format to be used during testing. During the test, the two-color combinations that are most distributed for each test data image are found. After that, we checked how the color combinations were distributed in the training data and corrected the result. We devised several equations to weight the result value from the model based on the extracted color as described above. The data set was randomly divided by 80:20, and the model was verified using 20% of the data as a test set. After splitting the remaining 80% of the data into five divisions to perform 5-fold cross-validation, the model was trained five times using different verification datasets. Finally, the performance was checked using the test dataset that was previously separated. Adam was used as the activation function, and the learning rate was set to 0.01. The training was performed as much as 20 epochs, and if the validation loss value did not decrease during five epochs of learning, the experiment was stopped. Early tapping was set to load the model with the best validation loss value. The classification accuracy was better when the extracted information using color properties was used together than the case using only the CNN architecture.