• 제목/요약/키워드: 가우시안 믹스처 모델

검색결과 3건 처리시간 0.015초

잡음환경에서의 음성인식을 위한 모델 파라미터 변환 방식에 관한 연구 (A Study on a Model Parameter Compensation Method for Noise-Robust Speech Recognition)

  • 장육현;정용주;박성현;은종관
    • 한국음향학회지
    • /
    • 제16권5호
    • /
    • pp.112-121
    • /
    • 1997
  • 본 논문에서는 잡음에 강한 음성 인식기를 위한 모델 파라미터 변환 방식에 관하여 살펴보았다. 모델 파라미터 변환에 있어서 잡음에 대한 어떠한 통계 모델도 사용하지 않고 각 단어 단위로 수행되어 실시간 음성 인식이 가능하도록 하였다. Parallel model combination(PCM)은 본 논문에서 제안한 방법과의 성능 비교를 위하여 cepstrum 영역에서 구현되었다. 본 논문에서 제안한 PCM 방법은 modified PCM(MPMC)라 하며, 이 방법은 각 hidden Markov mode(HMM)의 state별로 평균적인 가우시안 믹스처(Gaussian mixture)의 변화률과 개별적인 변화률간에 결합지수를 이용하여 평균을 재조정한다. 또한, vector Taylor series 근사화를 이용한 모델 파라미터 변환을 위하여 cepstrum 영역에서의 환경모델 예측을 위한 expectation-maximization(EM) 해를 유도하여 구현하였다. 본 논문에서 구현된 알고리즘들의 성능 위해 HMM 인식기를 이용한 화자독립 고립단어 인식을 수행하였다. 시용된 잡음은 가우시안 백색 잡음과 주행중에 녹음된 자동차 잡음이며, 각 잡음울 signal-to-noise ratio(SNR)별로 사용하였다. 잡음의 모델은 1 state HMM으로 단어시작 3 프레임(frame)을 이용하여 만들어졌다. 인식 결과는 VTS 접근방식을 이용하였을 경우 매우 우수한 인식률을 나타내었으며, MPMC의 경우도 기존의 PMC보다 인식률이 향상되었다. 특히, 영차 VTS의 경우는 단순히 평균만을 조정하였음에도 불구하고 PMC와 MPMC보다 인식률이 우수하게 나타났다.

  • PDF

후처리를 이용한 환경음 인식 성능 개선 (Improvement of Environmental Sounds Recognition by Post Processing)

  • 박준규;백성준
    • 한국콘텐츠학회논문지
    • /
    • 제10권7호
    • /
    • pp.31-39
    • /
    • 2010
  • 본 연구에 사용된 환경음은 9 가지 상황으로 구분하였으며 생활 속에서 인간의 이동에 따라 변화하는 실제 환경음과 동일한 테스트 데이터 셋을 이용하였다. 실제 환경에서 녹음된 데이터는 Pre-emphasis, Hamming window를 이용하여 전처리하고 MFCC (Mel-Frequency Cepstral Coefficients) 방식으로 특징을 추출한 후 GMM (Gaussian Mixture Model)을 이용하여 분류 실험을 행했다. 후처리가 없는 GMM은 프레임 별로 판정하므로 분류 결과를 보면 상황이 갑자기 변화하는 이상 결과가 나타난다. 이에 본 연구에서는 인접한 프레임 별 확률 값 혹은 분류 순위를 이용해서 갑작스런 상황 변화가 발생하지 않도록 하는 후처리 방식을 제안하였다. 실험 결과에 따르면 GMM 분류방식에 인접 프레임들의 사후확률 값을 이용하는 후처리방법을 적용한 경우 후처리를 적용하지 않은 경우에 비해 10% 이상 평균 인식률이 개선되는 것을 확인할 수 있었다.

멀티 신호를 이용한 환경 인식 성능 개선 (Improvement of Environment Recognition using Multimodal Signal)

  • 박준규;백성준
    • 한국콘텐츠학회논문지
    • /
    • 제10권12호
    • /
    • pp.27-33
    • /
    • 2010
  • 본 연구에서는 9가지 환경에서 마이크로폰과 자이로센서, 가속도센서를 이용하여 얻은 데이터를 특징 추출한 후 각 특징들을 조합하여 GMM (Gaussian Mixture Model)을 이용한 분류실험을 수행하였다. 기존의 환경 인식에 관한 연구들에서는 주로 마이크로폰을 이용한 환경음 데이터를 통해 인식주체의 환경 상황을 인식하고자 하였으나, 여러 노이즈들이 결합한 형태로 좋은 특징을 얻기 어려운 환경음의 구조적 특성으로 인해 그 인식 성능에 한계가 있었다. 이에 본 연구에서는 환경상황을 인식하기 위한 또 다른 방법으로 인식주체의 움직임 특성을 반영하기 위해 자이로센서와 가속도센서의 데이터를 특징에 추가 적용하는 방식을 제안하였다. 실험결과 따르면 마이크로폰을 통해 얻은 환경음의 특징만을 이용하는 기존의 방식들에 비해 가속도센서를 통해 얻은 데이터를 기존의 환경음 특징벡터와 조합한 경우에서 5% 이상 평균 인식률이 개선되는 것을 확인할 수 있었다.