• Title/Summary/Keyword: 가우스 광학

Search Result 25, Processing Time 0.019 seconds

Strehl ratio and marechal criterion for gaussian pupil imaging system (가우스 동 결상계에 대한 Strehl Ratio와 Marechal 한계)

  • 송영란;이민희;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.227-230
    • /
    • 1998
  • The Strehl ratio(SR) expressions are derived from the diffration intensity distribution in a Gaussian pupil imaging system, and Marechal criterion is applied for the case of astigmatism aberration first and then to all the rest of the Seidel 1st order aberrations. The aberration criteria obtained are tabulated. In the case of Rayleigh's pupil, the same criteria are always smaller than Gaussian pupil, thus the latter is superior to the former.

  • PDF

Fabrication of a gaussian amplitude modulation plate and measurement of diffraction linewidth (가우스 진폭변조판의 제작 및 회절 선폭 측정)

  • 송영란;이민희;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.448-452
    • /
    • 1999
  • The Gaussian impulse fUllction initially assumed in the inverse problem is $e^{-\sigma^2\chi^2}$. The modified Gaussian amplitude pupil function $e^{\frac-{\omega^2}{4\sigma^2}$ is obtained by the inverse Fourier transform of $e^{-\sigma^2\chi^2}$. A Gaussian amplitude modulation plate (GAMP) is designed and fabricated by using absorption and transparence glass which are the same refractive index. It is compared the experimental transmittance with theoretical that of GAMP. It is found that the linewidth of Gaussian optical imaging system obtained by wavelength is $0.365{\mu}m$ and NA is 0.07 is decrease 2/3 than that of Rayleigh.

  • PDF

Diffraction Amplitude Distribution of Finite Gaussian Pupil with Residual Aberrations (잔류수차가 있는 유한 가우스 동의 회절진폭 분포)

  • 송영란;이민희;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.142-145
    • /
    • 1998
  • It is shown that the optical system with Gaussian pupil e, diffraction amplitude distribution is not affected by the presence of residual aberrations. The case of spherical aberration is treated, as an example, and the complex diffraction amplitude distribution at the neighbourhood of the image point is described analytically by using a recurrence formula.

  • PDF

Influence of truncated gaussian beam on read-out signal in optical disc (단락된 가우스 광이 광학 디스크 재생 신호에 미치는 영향)

  • 박성종;정창섭
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.434-439
    • /
    • 1996
  • To investigate influence of the incident beams which have the truncated Gaussian amplitude and of the shapes of bump on read-out signal is an optical disc, and the point spread function on bump, the scalar diffraction theory is used in this paper. We consider the truncated Gaussian amplitudes which are $\sigma$=0, 0.5, 1.5, and 2.5, the height of bump which is given by $n{\Delta}_0={\lambda}/4$, and the phase height of bump which is then given by ${\Phi}_0={\pi}$. We also consider the shapes of the bump which are a rectangular shape, a frustoconical shape, and a conical shape. It is shown that as the truncation of incident beam reduces the radius of central spot on bump decreases, the maximum value of read-out signal increases, and that the size of bump decreases. From these results, we get better read-out signal and the reduced cross-talk in optical disc when the truncation of incident beam reduces. Therefore a laser beam having less truncated Gaussian amplitude may useful for an actual optical disc.

  • PDF

Double-Gauss Optical System Design with Fixed Magnification and Image Surface Independent of Object Distance (물체거리가 변하여도 배율과 상면이 고정되는 이중 가우스 광학계의 설계)

  • Ryu, Jae Myung;Ryu, Chang Ho;Kim, Kang Min;Kim, Byoung Young;Ju, Yun Jae;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • A change in object distance would generally change the magnification of an optical system. In this paper, we have proposed and designed a double-Gauss optical system with a fixed magnification and image surface regardless of any change in object distance, according to moving the lens groups a little bit to the front and rear of the stop, independently parallel to the direction of the optical axis. By maintaining a constant size of image formation in spite of various object-distance changes in a projection system such as a head-up display (HUD) or head-mounted display (HMD), we can prevent the field of view from changing while focusing in an HUD or HMD. Also, to check precisely the state of the wiring that connects semiconductor chips and IC circuit boards, we can keep the magnification of the optical system constant, even when the object distance changes due to vertical movement along the optical axis of a testing device. Additionally, if we use this double-Gauss optical system as a vision system in the testing process of lots of electronic boards in a manufacturing system, since we can systematically eliminate additional image processing for visual enhancement of image quality, we can dramatically reduce the testing time for a fast test process. Also, the Gaussian bracket method was used to find the moving distance of each group, to achieve the desired specifications and fix magnification and image surface simultaneously. After the initial design, the optimization of the optical system was performed using the Synopsys optical design software.

Numerical Calculation Method for Paraxial Zoom Loci of Complicated Zoom Lenses with Infinite Object Distance by Using Gaussian Bracket Method (가우스 괄호법을 이용한 무한 물점을 갖는 복잡한 줌 렌즈의 수치해석적인 근축광선 줌 궤적 추적법)

  • Yoo, Nam-Jun;Kim, Won-Seob;Jo, Jae-Heung;Ryu, Jae-Myung;Lee, Hae-Jin;Kang, Geon-Mo
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.410-420
    • /
    • 2007
  • We theoretically derive the set of utilizable paraxial zoom locus equations for all complicated zoom lens systems with infinite object distance, such as a camera zoom lens, by using the Gaussian bracket method and the matrix representation of paraxial ray tracing. And we make the zoom locus program according to these equations in Visual Basic. Since we have applied the paraxial ray tracing equations into Gaussian bracket representation, the resultant program systematically simplifies various constraints of the zoom loci of various N group types. Consequently, the solutions of this method can be consistently used in all types of zoom lens in the step of initial design about zoom loci. Finally, in order to verify the usefulness of this method, we show that one example among 4 groups and that among 5 groups, which are very complex zoom lens systems, can be rapidly and with versatility traced through various interpolations by using this program.

The Design of Telecentric Lenses and Fly-eye Lenses by Utilizing fθ Formula (fθ 공식을 활용한 텔레센트릭 렌즈 및 플라이아이 렌즈의 설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • We try to find the generalized structural equation that gives a perspective understanding for telecentric lenses through paraxial optical algebraic equations and preconditions from a highly experienced design sense. The equation is named the $f{\theta}$ formula and this formula is applied to single lenses, double Gauss lenses, Cooke triplet lenses and the compound lens composed of a Cooke triplet lens and a double Gauss lens step by step. And this formula is also applied to single fly-eye lenses plus a telecentric lens and double fly-eye lenses plus a telecentric lens in sequence. As a result, we can confirm that this $f{\theta}$ formula leads to intuitive optical design with a structural understanding for telecentric lens systems.