• Title/Summary/Keyword: 가우스적분점

Search Result 4, Processing Time 0.016 seconds

On the Modification of Gauss Integral Point of 6 Node Two Dimensional Isoparametric Element -Linear and Nonlinear Static and Dynamic Bending Analyses- (6절점 2차원 Isoparametric요소의 가우스적분점 수정에 관하여 -선형, 비선형의 정적 및 동적 굽힘해석-)

  • 김정운;정래훈;권영두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3007-3019
    • /
    • 1993
  • For the same configuration, the stiffness of 6-node two dimensional isoparametric is stiffer than that of 8-node two dimensional isoparametric element. This phenomenon may be called 'Relative Stiffness Stiffening Phenomenon.' In this paper, the relative stiffness stiffening phenomenon was studied, and could be corrected by modifying the position of Gauss integral points used in the numerical integration of the stiffness matrix. For the same deformation (bending) energy of 6-node and 8-node two dimensional isoparametric elements, Gauss integral points of 6-node element have to move closer, in comparison with those of 8-node element, in the case of numerical integration along the thickness direction.

Stress Recovery Technique by Ordinary Kriging Interpolation in p-Adaptive Finite Element Method (적응적 p-Version 유한요소법에서 정규 크리깅에 의한 응력복구기법)

  • Woo, Kwang Sung;Jo, Jun Hyung;Lee, Dong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.677-687
    • /
    • 2006
  • Kriging interpolation is one of the generally used interpolation techniques in Geostatistics field. This technique includes the experimental and theoretical variograms and the formulation of kriging interpolation. In contrast to the conventional least square method for stress recovery, kriging interpolation is based on the weighted least square method to obtain the estimated exact solution from the stress data at the Gauss points. The weight factor is determined by variogram modeling for interpolation of stress data apart from the conventional interpolation methods that use an equal weight factor. In addition to this, the p-level is increased non-uniformly or selectively through a posteriori error estimation based on SPR (superconvergent patch recovery) technique, proposed by Zienkiewicz and Zhu, by auto mesh p-refinement. The cut-out plate problem under tension has been tested to validate this approach. It also provides validity of kriging interpolation through comparing to existing least square method.

Evaluation of Stiffness Matrix of 3-Dimensional Elements for Isotropic and Composite Plates (등방성 및 복합재 플레이트용 16절점 요소의 강성행렬 계산)

  • 윤태혁;김정운;이재복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2640-2652
    • /
    • 1994
  • The stiffness of 6-node isotropic element is stiffer than that of 8-node isotropic element of same configuration. This phenomenon was called 'Relative Stiffness Stiffening Phenomenon'. In this paper, an equation of sampling point modification which correct this phenomenon was derived for the composite plate, as well as an equation for an isotropic plate. The relative stiffness stiffening phenomena of an isotropic plate element could be corrected by modifying Gauss sampling points in the numerical integration of stiffness matrix. This technique could also be successfully applied to the static analyses of composite plate modeled by the 3-dimensional 16-node elements. We predicted theoretical errors of stiffness versus the number of layers that result from the reduction of numerical integration order. These errors coincide very well with the actual errors of stiffness. Therefore, we can choose full integration of reduced integration based upon the permissible error criterion and the number of layers by using the thoretically predicted error.

Subparametric Element Based on Partial-linear Layerwise Theory for the Analysis of Orthotropic Laminate Composites (직교이방성 적층구조 해석을 위한 부분-선형 층별이론에 기초한 저매개변수요소)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.189-196
    • /
    • 2009
  • This paper presents the subparametric finite element model formulated by partial-linear layerwise theory for the analysis of laminate composites. The proposed model is based on refined approximations of two dimensional plane for orthotropic thick laminate plate as well as thin case. Three dimensional problem can be reduced to two dimensional case by assuming piecewise linear variation of in-plane displacement and a constant value of out-of-plane displacement across the thickness. The integrals of Legendre polynomials are chosen to define displacement fields and Gauss-Lobatto numerical integration is implemented in order to directly obtain maximum values occurred at the nodal points of each layer without other extrapolation techniques. The validity and characteristics of the proposed model have been tested by using orthotropic multilayered plate problem as compared to the values available in the published references. In this study, the convergence test has been carried out to determine the optimal layer model in terms of central deflection and stresses. Also, the distribution of displacements and stresses across the thickness has been investigated as the number of layer is increased.