• Title/Summary/Keyword: 가연영역

Search Result 27, Processing Time 0.022 seconds

Risk analysis of flammable range according to hydrogen vehicle leakage scenario in road tunnel (도로터널 내 수소차 누출시나리오에 따른 가연영역에 대한 위험성분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Hydrogen energy is emerging as an alternative to the depletion of fossil fuels and environmental problems, and the use of hydrogen vehicles is increasing in the automobile industry as well. However, since hydrogen has a wide flammability limit of 4 to 75%, there is a high concern about safety in case of a hydrogen car accident. In particular, in semi-enclosed spaces such as tunnels and underground parking lots, a fire or explosion accompanied by hydrogen leakage is highly likely to cause a major accident. Therefore, it is necessary to review hydrogen safety through analysis of flammability areas caused by hydrogen leakage. Therefore, in this study, the effect of the air velocity in the tunnel on the flammability area was investigated by analyzing the hydrogen concentration according to the hydrogen leakage conditions of hydrogen vehicles and the air velocity in the tunnel in a road tunnel with standard section. Hydrogen leakage conditions were set as one tank leaking and three tanks leaking through the TPRD at the same time and a condition in which a large crack occurred and leaked. And the air velocity in the tunnel were considered 0, 1, 2.5, and 4.0 m/s. As a result of the analysis of the flammability area, it is shown that when the air velocity of 1 m/s or more exists, it is reduced by up to 25% compared to the case of air velocity of 0 m/s. But there is little effect of reducing the flammability area according to the increase of the wind speed. In particular, when a large crack occurs and completely leaks in about 2.5 seconds, the flammability area slightly increases as the air velocity increases. It was found that in the case of downward ejection, hydrogen gas remains under the vehicle for a considerably long time.

Dispersion Characteristics of Hydrogen Gas by the Effect of Leakage Hole Size in Enclosure Space (누출공 크기에 따른 밀폐공간 내 수소 가스의 확산 특성)

  • Choi, Jinwook;Li, Longnan;Park, Chul-Woo;Lee, Seong Hyuk;Kim, Daejoong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.26-35
    • /
    • 2016
  • As a potential clean energy resource, the production and consumption of hydrogen gas are expected to gradually increase, so that hydrogen related studies are also increasing. The thermal and chemical properties of hydrogen result in its high flammability; in particular, there is a high risk if leaks occur within an enclosed space. In this study, we applied the computational fluid dynamics method to conduct a numerical study on the leakage behavior of hydrogen gas and compared these numerical study results with an experimental study. The leakage hole diameter was selected as an important parameter and the hydrogen gas dispersion behavior in an enclosed space was investigated through various analytical methods. Moreover, the flammable regions were investigated as a function of the leakage time and leakage hole size. We found that the growth rate of the flammable region increases rapidly with increasing leakage hole size. We also investigated the relation between the mass flow rate and the critical time when the hydrogen gas reaches the ceiling. The analysis of the monitoring points showed that the hydrogen gas dispersion behavior is isotropic and independent of the geometry. We found that the concentration of gas in an enclosed space is affected by both the leakage flow rate and amount of gas accumulated in the enclosure.

Analysis of Risk Assessment Factors for Gas leakage and Dispersion in Underground Power Plant (지하복합발전플랜트 내의 가스 누출 및 확산에 의한 위험성 평가 인자 분석)

  • Choi, Jinwook;Li, Longnan;Park, Jaeyong;Sung, Kunhyuk;Lee, Seonghyuk;Kim, Daejoong
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Gas leakage and dispersion in the underground LNG power plant can lead to serious fire and explosion accident. In this study, computational fluid dynamics simulation was applied to model the dynamic process of gas leakage and dispersion phenomena in a closed space. To analyze the risk assessment factor, such as the flammable volume ratio, transient simulations were carried out for different scenarios. The simulation results visualized the gas distribution with time in the closed space. The flammable volume ratio was introduced for quantitative analysis the fire/explosion probability.

Flammability Limits Variation of Opposed Flow Diffusion Flames for Different Channel Gap (채널 간격에 따른 대향류 확산화염의 가연 영역의 변화)

  • Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.323-324
    • /
    • 2012
  • Flammability limits of opposed flow diffusion flame in a narrow channel was investigated experimentally and theoretically. There were three different extinction modes corresponding to high strain rate (HSR), low strain rate (LSR) and dilution ratio (DR) limits. To investigate these limits, a theoretical study was followed by focusing on flow and heat transfer characteristics. Consequently, a dead space concept that has been used for premixed flames was important to reveal the heat loss mechanism in a narrow channel especially for LSR conditions even in the case of diffusion flames.

  • PDF

Effect of Swirl Angles and Combustion Characteristics of Low Swirl Model Combustor (저선회 모델 연소기의 연소특성 및 선회각도 영향)

  • Jeong, Hwanghui;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.40-49
    • /
    • 2016
  • This study aims to confirm the characteristics of low swirl combustion at our low swirl model combustor. To do it, it is experimentally conducted by evaluating the flame shape, stability region and emissions according to the swirl angle. The most significant feature of low swirl combustion is a occurrence of lifted flame. Such lifted flames happen to combine exquisitely propagating feature of premixed flame with diverging flow. This feature of lifted flame was confirmed through a velocity flow field and visualized the flame in this model combustor. The visualized flame was classified according to the thermal power and equivalence ratio. The variation study in swirl angles showed that the lean flammable limit could be extended only by swirl angles. Also, as the swirl angle increased, it was confirmed that the NOx and CO emissions were decreased due to the mixing enhancement and shorter resident time.

Eu3+ 몰 비 변화에 따른 La2MoO6:Eu3+ 형광체의 광학 특성

  • Kim, Ga-Yeon;Kim, Mun-Hwan;Jo, Sin-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.154-154
    • /
    • 2015
  • 최근에 백색 발광 소자와 조명 장치에 응용하기 위하여 희토류 이온이 도핑된 산화물 형광체의 제조에 많은 노력이 경주되고 있다. 본 연구에서는 $Eu^{3+}$ 이온이 첨가된 $La_2MoO_6$ 형광체를 고상반응법을 사용하여 합성하였다. $La_2MoO_6:Eu^{3+}$ 형광체 분말 시료는 활성체 $Eu^{3+}$ 이온의 함량을 0, 0.01, 0.05, 0.10, 0.15, 0.2 mol로 변화시켜 볼밀과 건조 작업을 거쳐 $400^{\circ}C$에서 3시간 동안 하소 공정과 $1100^{\circ}C$에서 5시간 동안 소결 공정을 수행하여 합성하였다. 흡광 스펙트럼의 경우에, 양이온 $Eu^{3+}$와 음이온 $O^{2-}$ 사이의 전하 전달 밴드에 의해 250~370 nm 영역에 폭넓게 발생한 흡광 신호와 370~450 nm 파장 영역에 발생한 다수의 약한 $Eu^{3+}$ 이온의 흡광 스펙트럼으로 구성되었다. 발광 스펙트럼의 경우에, 파장 333 nm로 여기시켰을 때, 620 nm에서 최대 세기를 갖는 적색 발광 신호, 593 nm의 주황색 발광 스펙트럼과 704 nm의 적색 발광 스펙트럼이 관측되었다. 620 nm에서 관측된 적색 발광 신호의 세기는 활성체 이온 $Eu^{3+}$의 함량이 0.20 mol일 때 최대이었다.

  • PDF

A NUMERICAL SIMULATION OF HYDROGEN DIFFUSION FOR THE HYDROGEN LEAKAGE FROM FCV IN UNDERGROUND PARKING LOT (지하주차장 내 수소연료 자동차의 수소 누설로 인한 수소 확산에 대한 수치해석 연구)

  • Choi, J.;Hur, N.;Lee, E.D.;Lee, K.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.477-482
    • /
    • 2011
  • In the present study, the diffusion process of hydrogen leaking from a FCV (Fuel Cell Vehicle) in an underground parking lot was analyzed by numerical simulations in order to assess the risk of a leakage accident. The temporal and spatial changes of the hydrogen concentration as well as the flammable region in the parking lot were predicted numerically. The effects of the leakage flow rate and an additional ventilation fan were investigated to evaluate the ventilation performance in the parking lot to relieve the accumulation of the leaked hydrogen gas. The present numerical analysis can provide useful information such as the distribution of the leaked hydrogen concentration for safety of various hydrogen applications.

  • PDF

Discussion of the edge flame structure at the near flammability limits (가연한계 영역에서의 에지 화염 구조 및 고찰)

  • Lee, Min Jung;Jung, Yongjin;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.245-246
    • /
    • 2015
  • In this study, the structure of a edge flame near the flammability limits was explored through several paths approaching the combustion limits of a non-premixed flame: i.e., increase of fuel dilution ratio (FDR), reduction of mean flow velocity and variation of gravity effect. As a result, a unique interesting flame structure was discovered; i.e., a diffusion flame branch was enclosed by two asymmetric premixed flame branches. These structures have been compared for various fuels. Conclusively, each fuel has different flame structure and the meaning of this structure was discussed concerned about our understanding of laminar flame structures.

  • PDF

A Study on Lean Combustion Characteristics with Hydrogen Addition in a Heavy Duty Natural Gas Engine (대형 천연가스엔진에서의 수소 첨가에 의한 희박연소특성 연구)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Won, Sang-Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.12-17
    • /
    • 2010
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its high thermal efficiency and lower harmful emissions, including $CO_2$. However, the possibility of partial burn and misfire makes the benefits of natural gas fueled engine worse under lean burn operation condition, Hydrogen addition can promote the combustion characteristics while reduces emissions extremely. In this study, the effect of hydrogen addition on an engine performance was investigated. The results showed that thermal efficiency was increased due to the expansion of lean operation range under stable operation. NOx emission can be significantly reduced with the small increase in HC or CO emissions.

The Effects of Injector and Swirler on the Flame Stability in a Model Combustor (모델연소기에서의 화염 안정화에 대한 분사기와 선회기의 영향)

  • Park, Seung-Hun;Lee, Dong-Hun;Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.13-27
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air and the combustion stability leading the reduction of pollutant emissions and the increase of combustion efficiency in gas turbine combustor. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-Pt13%Rh, R-type thermocouple which was 0.2mm thick. Spray and flame was visualized by ICCD(Intensified Charge Coupled Device) camera. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the geometries of injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF