• Title/Summary/Keyword: 가압중수로 압력관

Search Result 9, Processing Time 0.026 seconds

중수감속 가압경수로의 핵설계 타당성

  • 김명현;윤진규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.04a
    • /
    • pp.100-104
    • /
    • 1996
  • 신형경수로의 설계 대안으로서 기존 가압경수로와 가압중수로의 단점들을 극복하고, 장점들을 채택한 새로운 중수감속 경수로의 노심 설계를 제안하였다. 기존 가압중수로의 압력관내에 경수를 냉각제로 순환시키며 중수를 감속재로서 압력관 외부에 배치하였으며, 핵연료로서 농축우라늄을 사용하는 설계 개념은 많은 설계 장점을 갖는다. 본 연구에서는 시스템은 기존 CANDU의 설계를 입증기술로서 가능한 그대로 채택하고, 핵연료와 냉각재에 대해 핵설계를 수행하여 핵적 타당성을 검토하였다. 핵연료다발은 월성 2호기 사양을 그대로 사용하여 37봉 핵연료 다발로 하였으며, 농축도, 봉간간격, 핵연료다발간 간격들을 변형시켜 높은 연소도를 확보하면서 냉각재 온도계수와 감속재 온도계수가 음의 안전성을 갖는 원자로가 설계될 수 있음을 확인하였다.

  • PDF

Development of Fuel Channel Inspection System in PHWR (중수로 연료관 검사시스템 개발)

  • Choi, Sung-Nam;Yang, Seung-Ok;Kim, Kwang-Il;Lee, Hee-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.60-67
    • /
    • 2016
  • A pressurized heavy water reactor (PHWR) designed to refuel in service produces the energy required by nuclear fission. The fuel channel consists of components such as a pressure tube which directly contacts the fuel and is a passage for the reactor coolant, a calandria tube which contacts the moderator and is rolled joint with calandria, and a spacer which is not to contact the pressure tube and a calandria tube. As the fuel channel is one of the most important equipments, it requires accurate and periodic inspections to assess the integrity of a reactor in accordance with CSA N285.4. A fuel channel inspection system is developed to inspect fuel channels during in-service inspection in Wolsong unit. In this paper, the results and considerations of a field test are presented in order to show the effectiveness of the developed fuel channel inspection system.

Development of an Integrity Evaluation System (WIES) for Fuel Channels in CANDU Reactors (중수로 연료관 건전성 평가시스템(WIES) 개발)

  • Choi, Sung-Nam;Kim, Hyung-Nam;Yoo, Hyun-Joo;Kwon, Dong-Kee;Hwang, Won-Gul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1273-1279
    • /
    • 2010
  • Pressure tubes at the CANada Deuterium Uranium (CANDU) nuclear power plants are periodically inspected in accordance with the CSA N285.4 code. If flaws that do not satisfy the criteria given in CSA N285.4 are detected, the code permits a fitness-for-service assessment to determine the acceptability of the flawed pressure tubes. In this paper, the Wolsong In-service Evaluation System (WIES) is introduced; this system has been developed for the assessment of the flawed pressure tubes and is based on CSA N285.8. Since the system evaluates the integrity of flawed pressure tubes exactly and promptly during an in-service inspection, it will help in operating the Wolsong nuclear power plants without prolonging the outage period.

Derivation of Elastic Stress Concentration Factor Equations for Debris Fretting Flaws in Pressure Tubes of Pressurized Heavy Water Reactors (가압중수로 압력관 이물질 프레팅 결함의 탄성 응력집중계수 수식 도출)

  • Kim, Jong Sung;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.167-175
    • /
    • 2014
  • If volumetric flaws such as bearing pad fretting flaws and debris fretting flaws are detected in the pressure tubes of pressurized heavy water reactors during in-service inspection, the initiation of fatigue cracks and delayed hydrogen cracking from the detected volumetric flaws shall be assessed by using elastic stress concentration factors in accordance with CSA N285.8-05. The CSA N285.8-05 presents only an approximate formula based on linear elastic fracture mechanics for the debris fretting flaw. In this study, an engineering formula considering the geometric characteristics of the debris fretting flaw in detail was derived using two-dimensional finite element analysis and Kinectrics, Inc.'s engineering procedure with slight modifications. Comparing the application results obtained using the derived formula with the three-dimensional finite element analysis results, it is found that the results obtained using the derived formula agree well with the results of the finite element analysis.

Diameter Evaluation for PHWR Pressure Tube Based on the Measured Data (측정 데이터 기반 중수로 압력관 직경평가 방법론 개발)

  • Jong Yeob Jung;Sunil Nijhawan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Pressure tubes are the main components of PHWR core and serve as the pressure boundary of the primary heat transport system. However, because pressure tubes have changed their geometrical dimensions under the severe operating conditions of high temperature, high pressure and neutron irradiation according to the increase of operation time, all dimensional changes should be predicted to ensure that dimensions remain within the allowable design ranges during the operation. Among the deformations, the diameter expansion due to creep leads to the increase of bypass flow which may not contribute to the fuel cooling, the decrease of critical channel power and finally the deration of the power to maintain the operational safety margin. This study is focused on the modeling of the expansion of the pressure tube diameter based on the operating conditions and measured diameter data. The pressure tube diameter expansion was modeled using the neutron flux and temperature distributions of each fuel channel and each fuel bundle as well as the measured diameter data. Although the basic concept of the current modeling approach is simple, the diameter prediction results using the developed methodology showed very good agreement with the real data, compared to the existing methodology.

Nondestructive Examination of PHWR Pressure Tube Using Eddy Current Technique (와전류검사 기술을 적용한 가압중수로 원전 압력관 비파괴검사)

  • Lee, Hee-Jong;Choi, Sung-Nam;Cho, Chan-Hee;Yoo, Hyun-Joo;Moon, Gyoon-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.254-259
    • /
    • 2014
  • A pressurized heavy water reactor (PHWR) core has 380 fuel channels contained and supported by a horizontal cylindrical vessel known as the calandria, whereas a pressurized water reactor (PWR) has only a single reactor vessel. The pressure tube, which is a pressure-retaining component, has a 103.4 mm inside diameter ${\times}$ 4.19 mm wall thickness, and is 6.36 m long, made of a zirconium alloy (Zr-2.5 wt% Nb). This provides support for the fuel while transporting the $D_2O$ heat-transfer fluid. The simple tubular geometry invites highly automated inspection, and good approach for all inspection. Similar to all nuclear heat-transfer pressure boundaries, the PHWR pressure tube requires a rigorous, periodic inspection to assess the reactor integrity in accordance with the Korea Nuclear Safety Committee law. Volumetric-based nondestructive evaluation (NDE) techniques utilizing ultrasonic and eddy current testing have been adopted for use in the periodic inspection of the fuel channel. The eddy current testing, as a supplemental NDE method to ultrasonic testing, is used to confirm the flaws primarily detected through ultrasonic testing, however, eddy current testing offers a significant advantage in that its ability to detect surface flaws is superior to that of ultrasonic testing. In this paper, effectiveness of flaw detection and the depth sizing capability by eddy current testing for the inside surface of a pressure tube, will be introduced. As a result of this examination, the ET technique is found to be useful only as a detection technique for defects because it can detect fine defects on the surface with high resolution. However, the ET technique is not recommended for use as a depth sizing method because it has a large degree of error for depth sizing.

Intercomparisonn of Techniques for Pressure Tube Inspection of Pressurized heavy Water Reactor (가압 중수로형 원자력발전소 압력관 비파괴검사기술의 상호비교)

  • Lee, Hee-Jong;Kim, Yong-Si;Yoon, Byung-Sik;Lee, Young-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.294-303
    • /
    • 2005
  • This paper describes the analysis results of a series f Round-Robin test that was performed to intercompare inspection and diagnosis techniques for characterization of pressure tube f a pressurized heavy water reactor under the Coordinated Research Project(CRP) of IAEA's nuclear Power Programme. For this test, six nations, Korea, Canada, India, Argentina, Rumania, and China that currently have pressurized heavy water reactors under operation involved, and the "KOR-1" pressure tube sample prepared by Korea was used. Two kinds of NDE technique, ultrasonic and eddy current test, were applied for these tests. The "KOR-1" pressure tube sample contains total 12 artificial flaws such as crack-like EDM notches, wear that is similar to the real flaws and can be produced on the pressure tubes during plant operation. Test results showed that seven laboratories from six nations detected all twelve flaws in "KOR-1" specimen by using ultrasonic and eddy current test methods, and ultrasonic test method was more accurate than eddy current test method in flaw detectin and sizing. ID flaws in pressure tube sample were more easily detected and accurately sized than OD flaws.

Development of Remote Visual Inspection Technology for Calandria & Internal of CANDU NPP (중수로 칼란드리아 내장품 원격 육안검사 기술 개발)

  • Lee, Sang-Hoon;Jin, Seuk-Hong;Moon, Gyoon-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.72-77
    • /
    • 2010
  • During the period of reinforcement work for the licensing renewal of CANDU NPP, the fuel channels, Calandria tubes and feeders of CANDU Reactor are replaced. The remote visual inspection of Calandria internal is also performed during the period of reinforcement work. This period is a unique opportunity to inspect the inside of the Calandria. The visual inspection for the Calandria vessel and its internals of Wolsong NPP Unit 1 was performed by Nuclear Engineering & Technology Institute(NETEC) of KHNP. To perform this inspection, NETEC developed equipment applied new technology such as the synchronization of 3D CAD, automatic alignment and control system. The inspection confirmed that the Calandria integrity of Wolsong NPP Unit 1 is perfect.

  • PDF

A Field Test Assessment on the Extremity Doses of Highly-Exposed Radiation Workers During Maintenance Periods at Nuclear Power Plants in Korea (원전 계획예방정비기간 고피폭 접촉작업에서 방사선작업종사자의 말단선량 평가 현장시험)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.57-62
    • /
    • 2010
  • Maintenance on the water chamber of steam generator, the change of pressurizer heater, the removal of pressure tube feeder, and so on during outage in nuclear power plants (NPPs) has a likelihood of high radiation exposure to whole body of workers even short time period due to the high radiation exposure rates. In particular, it is expected that hands would receive the highest radiation exposure because of its contact with radiation materials. In this study, field tests on extremity dose assessment of radiation workers for contact works with high radiation exposure were conducted during the maintenance periods in Korean pressurized water reactors (PWRs) and pressurized heavy water reactors (PHWRs). In this field test, radiation workers were required to wear additional TLDs on the back and wrist, and an extremity dosimeter on fingers including a main TLD on the chest, while performing maintenance. As a result, it was found that the equivalent dose for fingers was distributed in the fixed range of deep dose and the equivalent dose for wrists.