• Title/Summary/Keyword: 가압가스

Search Result 185, Processing Time 0.022 seconds

Characteristics of Food Waste Leachate Treatment in Thermophilic two Stage Anaerobic Digestion Combined UF Membrane (막결합형 고온 이상 혐기성 소화공정에서 음폐수 처리 특성)

  • Kim, Young-O;Jun, Duk-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.21-24
    • /
    • 2012
  • In this study, Anaerobic Membrane Bioreactor(AnMBR) treating food waste leachate was operated to investigate treatment efficiency of anaerobic process, operational parameters and production of biogas. AnMBR was operated under the condition of filtration type of inside-out mode. AnMBR was operated under the condition that range of permeate flux was from 15 to 20 LMH and range of transmembrane pressure was from 1 to $3 kgf/cm^2$. It was not good that AnMBR was performed under direct connection between anaerobic reactor and external UF module. so, this connection method changed to indirect connection using buffer tank was placed between anaerobic reactor and UF external module. TCOD and SCOD values were that influent were about 113 g/L, 62 g/L and effluent were 25 g/L, 12 g/L, respectively. also TCOD and SCOD removal efficiency were 77% and 81%, respectively. but after added UF process, COD and SCOD removal efficiency was increased to 93% and 86%, respectively.

Fabrication of Al2O3/Fe-Ni Nanocomposites by Atmosphere-controlled Sintering and their Properties (소결분위기 제어에 의한 Al2O3/Fe-Ni 나노복합재료의 제조 및 특성)

  • Lee, Hong-Jae;Jeong, Young-Keun;Oh, Sung-Tag;Lee, Jai-Sung;Sekino, Tohru
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.199-203
    • /
    • 2002
  • To investigate an effect of sintering atmosphere on microstructure and properties of metallic particle dispersed ceramic based composites, the powder mixtures of $Al_2O_3$/Fe-Ni, synthesized by chemical solution process, were hot-pressed under different atmospheres such as hydrogen or argon gas and different sintering temperature. Hot-pressed composite in a hydrogen atmosphere exhibited less reaction phase of $FeAl_2O_4$ and enhanced mechanical properties than that in an argon atmosphere. Furthermore, decreasing hot-pressing temperature produced a refinement of ceramic matrix and metallic dispersion particles as well as improvement of mechanical properties. The change of mechanical properties in the composites with different sintering conditions was explained by microstructural characteristics relating to reaction phase formation.

고리 1호기 계속운전 추진 현황

  • Jeong, Seong-Du
    • Nuclear industry
    • /
    • v.27 no.4 s.290
    • /
    • pp.46-50
    • /
    • 2007
  • 고리 1호기는 한국에서 최초로 규제 기관에 계속운전을 신청한 원전이다. 2007년 6월에 설계 수명 기간 만료가 되는 고리 1호기는 규제 기관으로부터 계속운전(Continued Operation)에 대한 안전성 심사를 받고 있다. 한수원은 고리 1호기 계속운전 승인을 금년 12월에 받기 위해 최선을 다하고 있으며 지역 주민의 사회적 수용성 확보를 위해 노력중이다. 고리 1호기의 계속운전 기간 동안 안전성을 평가하고 정리한 안전성평가보고서를 한수원은 2006년 6월에 정부에 제출하였다. 고리 1호기는 웨스팅하우스의 2루프 가압경수로이다. 이와 동일한 원전인 일본의 미하마 1,2호기와 겐까이1호기가 계속운전중이며, 미국의 기네이와 포인트 비치 1,2호기가 계속운전 승인을 받았다. 제출한 안전성평가보고서에 대해 한국원자력안전기술원이 심사중이며, 해외 원전과 같이 계속운전을 할 수 있을 것으로 예상하고 있다. 또한 계속운전을 위한 사회적 수용성(Public Acceptance) 확보는 설비의 철저한 안전성 확보 및 지역 주민의 공감대 형성을 통해서 이루어질 것이다. 설계 수명 이후 원자력발전소를 계속 운전하는 것은 이미 선진국에서 시행되고 있다. 2007년 3월 기준으로 미국에서 48기가 운영 허가 갱신 승인을 받았고, 영국은 8기, 일본은 12기가 계속운전중이다. 고리 1호기 성능 지표를 개선시키기 위해서 한수원은 증기발생기, 저압 터빈, 원자로 냉각재 펌프 내장품, 주변압기, 주발전기 등을 교체하였으며, 수명관리 연구, 주기적안전성 평가, 환경 영향 평가를 수행하였다. 2005년 9월에는 미국의 운영 허가 갱신 제도를 참조하여 원자력법이 개정되었다. 이에 한수원은 개정된 원자력법에 맞추어 주기적 안전성평가, 주요 기기에 대한 수명 평가 및 방사능 환경 영향평가를 하였다. 이 세가지 보고서들로 구성된 안전성평가보고서를 2006년 6월에 규제 기관에 제출하였다. 계속운전은 한국을 비롯하여 부존 자원이 부족한 국가들에게는 에너지 자원의 효율적 활용 및 온실 가스 배출을 고려할 때 반드시 필요한 것이다.

  • PDF

Gas Permeable Properties of Elastomer-Clay Nanocomposite Membrane (유기탄성체-Clay 나노복합재료 막의 기체투과 특성)

  • Nam Sang-Yong;Park Ji-Soon;Rhim Ji-Won;Chung Youn-Suk;Lee Young-Moo
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.144-152
    • /
    • 2006
  • Elastomer-clay nanocomposite membranes were prepared by melt intercalation mothod with internal mixer. We are used NMR, Ionomer, SEBS (Styrene Ethylene Butadien styrene Copolymer) as elastomer, and modified clay. Gas barrier property of the elastomer-clay nanocomposites membranes were investigated by a gas permeability of $CO_2,\;O_2,\;N_2$ at room temperature. Gas permeability through the elastomer-clay nanocomposite membranes increased due to increased tortuosity made by intercalation of clay in elastomer.

Deriving the Rate Constants of Coal Char-CO2 Gasification using Pressurized Drop Tube Furnace (가압 DTF를 이용한 석탄 촤-CO2 가스화 반응상수 도출)

  • Sohn, Geun;Ye, Insoo;Ra, Howon;Yoon, Sungmin;Ryu, Changkook
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.19-26
    • /
    • 2017
  • This study investigates the gasification of coal char by $CO_2$ under high pressures in a drop tube furnace(DTF). The rate constants are derived for the shrinking core model using the conventional method based on the set reactor conditions. The computational fluid dynamic(CFD) simulations adopting the rate constants revealed that the carbon conversion was much slower than the experimental results, especially under high temperature and high partial pressure of reactants. Three reasons were identified for the discrepancy: i) shorter reaction time because of the entry region for heating, ii) lower particle temperature by the endothermic reaction, and iii) lower partial pressure of $CO_2$ by its consumption. Therefore, the rate constants were corrected based on the actual reaction conditions of the char. The CFD results updated using the corrected rate constants well matched with the measured values. Such correction of reaction conditions in a DTF is essential in deriving rate constants for any char conversion models by $H_2O$ and $O_2$ as well as $CO_2$.

Study on Hydraulic Fracturing in Transverse Isotropic Rock Using Bonded Particle Model (입자결합모델을 이용한 횡등방성 암석에서의 수압파쇄 특성 연구)

  • Jung, Jaewoong;Heo, Chan;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.470-479
    • /
    • 2013
  • Hydraulic fracturing is used as a method for promoting the fluid flow in the rock and, in the energy field such as geothermal development and the development of sales gas, many studies has been actively conducted. In many cases, hydraulic fracturing is not performed in isotropic rock and especially in the case of sedimentary rocks, hydraulic fracturing is conducted in the transverse isotropic rock. The direction of the crack growth on hydraulic fracturing does not necessarily coincides with the direction of maximum principal stress in the transverse isotropic rock. Therefore, in this study, bonded particle model with hydro-mechanical coupling analysis was adopted for analyzing the characteristics of hydraulic fracturing in transverse isotropic rock. In addition, experiments of hydraulic fracturing were conducted in laboratory-scale to verify the validity of numerical analysis. In this study, the crack growth and crack patterns showed significant differences depending on the viscosity of injection fluid, the angle of bedding plane and the influence of anisotropy. In the case of transverse isotropic model, the shear crack growth due to hydraulic fracturing appeared prominently.

The Seismic Design of Water Extinguishing Piping Systems for Equivalent Static Analysis Method (등가정적해석법에 의한 수계 파이프 시스템의 내진설계)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.100-105
    • /
    • 2012
  • In this study, seismic design in pipeline of pressurized water supply system of water extinguishing system has been carried out. This study described a generation of artificial earthquake wave compatible with seismic design spectrum, and also determined equivalent static loads to analyzed the response spectra acceleration by the simulated earthquake motion. This study constructed powerful engineering base for seismic design, and presented equivalent static analysis method for seismic design of water and gas extinguishing piping system. Also, this study readied basis that can apply seismic design and performance estimation of fire fighting system as well as pipeline of water extinguishing system from result of this research. Hereafter, if additional research by earthquake magnitude and ground kind is approached, reliance elevation, safety raising and performance based design of fire fighting system see to achieve.

Study on Pressurized Diesel Reforming System for Polymer Electrolyte Membrane Fuel Cell in Underwater Environment (수중 환경에서 고분자 전해질 연료전지(PEMFC) 공급용 수소 생산을 위한 가압 디젤 개질시스템에 관한 연구)

  • Lee, Kwangho;Han, Gwangwoo;Bae, Joongmyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.528-535
    • /
    • 2017
  • Fuel cells have been spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen which is the fuel of fuel cell can be obtained from a number of sources. Hydrogen source for operating the polymer electrolyte membrane fuel cell(PEMFC) in the current underwater environment, such as a submarine and unmanned underwater vehicles are currently from the metal hydride cylinder. However, metal hydride has many limitations for using hydrogen carrier, such as large volume, long charging time, limited storage capacity. To solve these problems, we suggest diesel reformer for hydrogen supply source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC requires a large volume and complex CO removal system for lowering the CO level to less than 10 ppm. In addition, because the preferential oxidation(PROX) reaction is the strong exothermic reaction, cooling load is required. By changing this PROX reactor to hydrogen separation membrane, the problem from PROX reactor can be solved. This is because hydrogen separation membranes are small and permeable to pure hydrogen. In this study, we conducted the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen separation membrane application. Then, the hydrogen permeation experiments were performed using a Pd alloy membrane for the reformate gas.

Development and Launching Test of 10N Class Liquid Propellant Rocket (10뉴턴급 추진력의 액체로켓 개발 및 발사시험)

  • Lee, Jung-Sub;Choi, Won-June;Kim, Min-Ki;Moon, Ki-Hyun;Song, Seong-Hwan;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.375-379
    • /
    • 2008
  • In this paper, a 10N class liquid propellant rocket utilizing a dissolving reaction of hydrogen peroxide is constructed and tested. Through a series of designs, seven orifices with a diameter of 200 ${\mu}m$ and a nozzle with a neck of 2.5mm in diameter and area ratio of 2.56 were made. The platinum coated on Isolite was used for catalyst. 90wt% peroxide pressed at 20 bar by nitrogen gas was used for performance evaluation. The length of the catalyst bed and the load of platinum was taken as the parameters for this experiment. For the catalyst support length of 4cm loaded on 5wt% platinum, satisfactory $c^*$ efficiency and stable thrust was observed. The light weight body of the rocket was composed of aluminum. Rocket rose about 10m with relatively constant velocity in launching test.

  • PDF

Effect of pyrolysis temperature and pressing load on the densification of amorphous silicon carbide block (열분해 온도와 성형압력의 영향에 따른 비정질 탄화규소 블록의 치밀화)

  • Joo, Young Jun;Joo, Sang Hyun;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.271-276
    • /
    • 2020
  • In this study, an amorphous SiC block was manufactured using polycarbosilane (PCS), an organosilicon polymer. The dense SiC blocks were easily fabricated in various shapes via pyrolysis at 1100℃, 1200℃, 1300℃, 1400℃ after manufacturing a PCS molded body using cured PCS powder. Physical and chemical properties were analyzed using a thermogravimetric analyzer (TGA), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and universal testing machine (UTM). The prepared SiC block was decomposed into SiO and CO gas as the temperature increased, and β-SiC crystal grains were grown in an amorphous structure. In addition, the density and flexural strength were the highest at 1.9038 g/㎤ and 6.189 MPa of SiC prepared at 1100℃. The manufactured amorphous silicon carbide block is expected to be applicable to other fields, such as the previously reported microwave assisted heating element.