• Title/Summary/Keyword: 가시설

Search Result 110, Processing Time 0.018 seconds

An Experimental Study on the Evaluation of Residual Tensile Load-carrying Capacity of Corroded Steel Plates of Temporary Structure (가시설 부식 강재의 잔존 인장 내하성능 평가에 관한 실험적 연구)

  • Kim, In-Tae;Chang, Hong-Ju;Cheung, Ji-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.399-409
    • /
    • 2010
  • Steel structures are threatened to reduce load-carrying capacity as the cross section is decreased by corrosion. However, there has been no method in definitely evaluating residual load-carrying capacity and the effect of corrosion to the load-carrying capacity of steel. This study evaluated tensile residual load-carrying capacity of corroded steel plates by using tensile tests of specimens, which were selected from the web of temporary structure's main beam. After the surface shapes were measured and tensile tests were examined, the rust of 21 corroded specimens was, first of all, removed using a chemical method. From the tensile test result, which of reference specimens that was picked off at the flange of the same main 13-mm-thick beam and corroded specimens were based, surface geometry and correlation with the reduction of corroded thickness and strain, yield strength or tensile strength was established as constant numbers. Effective thickness of corroded steel with irregular cross sections could be calculated using average residual thickness and standard deviation. The irregular cross sections could be the evaluated tensile strength that is equalized to non-corroded uniform steel's regardless of corrosion. Also, reasonable measuring intervals of residual thickness could be proposed by using this result to apply for executive work.

Parametric Study for Seismic Design of Temporary Retaining Structure in a Deep Excavation by Dynamic Numerical Analysis (동적수치해석을 이용한 대심도 흙막이 가시설 내진설계 변수연구)

  • Yang, Eui-Kyu;Yu, Sang-Hwa;Kim, Dongchan;Kim, Jongkwan;Ha, Ik-Soo;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.45-65
    • /
    • 2022
  • In this paper, a diaphragm wall that supports soils and rock was modeled using FLAC, a finite difference analysis program, to evaluate the seismic behavior of temporary retaining structures in a deep excavation. The appropriateness of the numerical model was verified by comparing its results with those of the centrifuge test performed in a similar condition. The bending moment distribution along the diaphragm wall shows a very similar tendency, and the maximum acceleration obtained at the backfill and top of the wall shows a difference within 5%. Based on the developed model, a parametric study was conducted in various input earthquake, ground, and excavation conditions. The maximum structural forces and bending moment under earthquake loading were compared with the maximum values during excavation, from which the critical condition that requires a seismic design was roughly sorted out. The maximum bending moment of a wall that retains soil layers increased 17%. Particularly, the axial force of struts located in loose soils increased 32% under 100 years return period of an earthquake event, which strongly is estimated to require seismic design for structural safety.

A Study on the Optimal Location of the Inclinometer and Strain Gauge in Small-Scale Underground Excavation (소규모 지하굴착에서 지중경사계와 변형률계의 최적 위치 선정에 대한 연구)

  • Gichun Kang;Jinuk Park;Byeongjin Roh;Jiahao Sun;Seong-Kyu Yun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.23-33
    • /
    • 2023
  • Currently, there are cases in Korea where economic damage has occurred due to the ambiguity instrument installation and operation standards in the construction of temporary earth retaining wall, failing to prevent collapse of temporary earth retaining wall at the construction site in advance. Therefore, in this study, a numerical analysis was conducted to find the appropriate installation location of the inclinometer and strain gauge among the installed instruments shown in the design drawing of the temporary earth retaining wall. As a results, It was found that the installation position of the underground inclinometer is the corner of the retaining wall in the case of plane-deformation analysis, and the most displacement occurs in the center of the excavation surface in the case of 3D analysis. When the stress and moment are comprehensively analyzed, the corner is judged to be a vulnerable point. In the case of the strain gauge, In plane-deformation analysis and 3D analysis, the maximum bending stress occurred at the wale connection where the end of the strut and the counter strut are in contact. At this point, it is analyzed that it is necessary to focus on installing and managing the connection to prevent accidents from being vulnerable.

A Case Study on Multiple-deck-charge Blasting with Electronic Detonators (전자뇌관과 다단장약을 이용한 발파 사례 연구)

  • Ko, Tae Young;Shin, Chang Oh;Lee, Hyo;Lee, Seung Cheol
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.52-58
    • /
    • 2012
  • A TBM launching shaft in DTL2 Contract 915 site is located in a typical hard Bukit Timah granite formation and lots of blasting work is required for shaft sinking. The original blast design used the electric detonator and ANFO blasts consisting of 30 holes per one blast with 1.5 m depth of drilling hole. However, significant delay of work and poor progress were expected due to the limitation of the number of blasting hole and strict vibration regulation on retaining systems. To overcome such constraints, an efficient new blasting method which can improve productivity and satisfy vibration limit was required. The revised blast design, using triple-deck blasts with electronic detonators and cartridge emulsion explosives, gives better construction performance and can reduce construction time. Such a new blasting technique can be effectively used for similar underground projects in the future where the volume of rock blasting is significant.

Performance Test of Corner Rigid Joint for Modular Structure using Channel and Coupler (채널과 커플러를 사용한 모듈식 구조체 우각부 연결구조의 성능검증 실험)

  • Lee, Jun-Kyoung;Lee, Jong-Soon;Lee, Sung-Hyung;Kim, Hee-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2255-2262
    • /
    • 2015
  • Recent study about near-surface is proposed to overcome non-economic of underground railway and to reduce people's complaints of ground elevated railway. In this report, precast modular structure system replacing temporary facilities is applied to ensure the construction ability and economic feasibility. To verify the performance of connection joint between permanent structural wall and upper slab, loading test is carried out. As a result of the test, wall replacing temporary structure to slab connection is possible to transfer bending moment. By 30% increase of bending resistant performance for connection joint using coupler, coupler connection joint is more advantageous to resist bending moment compared to channel connection.

Estimation for Equivalent Flexural Stiffness of Innovative Prestressed Support(IPS) Wale (혁신적 프리스트레스트 가시설(IPS)의 띠장에 대한 등가 휨강성의 산정)

  • Kim, Sung Bo;Kim, Hun Kyom;Heo, In Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.393-401
    • /
    • 2009
  • The flexural-stiffness formula of the wale for the innovative prestressed support (IPS) system was precisely derived, and the equivalent beam stiffness was introduced for application in the actual design of the IPS wale. The cable tension forces of the IPS wale were calculated in both cases, and the axial-deformation effects were included and ignored, respectively. The central displacements of the 1-post, 2-post, 3-post, and 4-post IPS wales were calculated based on the principle of virtual work. The effects of the IPS wale length and cable inclination angle were also investigated using the derived central displacements. The simplified equivalent flexural stiffness of the IPS wale is presented herein for design purposes, and the validity of the proposed design formula was verified through its comparison with the FE and analysis solutions.

An Experimental Study on the Inclined Earth Retaining Structure in Clay (점토지반내의 IER 지주식 흙막이의 실험적 고찰)

  • Jeong, Dong-Uk;Im, Jong-Chul;Yoo, Jae-Won;Seo, Min-Su;Koo, Young-Mo;Kim, Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.63-75
    • /
    • 2013
  • Inclined Earth Retaining Structure Method (IER Method), was developed in order to improve the mechanical properties of the existing earth retaining method. IER consists of two supports, which are front and back supports. In the IER method, back support is very effective for the reduction of the earth pressure acting on the front support. In this study, the effects of back support and fixing conditions of lower ends of supports are analysed by laboratory model tests in clay. The test results show that back support reduces the Leteral displacement of IER effectively, and according to the results the effect of interval and fixing condition of back support was analysed.

Value Engineering Idea Generation for Temporary Construction Designs through Conflict Resolution (가시설 공사 설계VE 대안검토시 모순충돌 해결을 통한 아이디어 창출)

  • Hong, Soonheon;Baeg, Hangee;Moon, Sungwoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.6
    • /
    • pp.30-37
    • /
    • 2013
  • Idea creation is the most important step in the overall value engineering (VE) process. Usually the activity is done mostly relying on the experience and knowledge of the experts in the VE team. A more organized approach is needed to find the chance of design improvement during a VE workshop. This study presents an organized approach to increasing the chance of idea creation during the VE workshop. The concept of conflict resolution in TRIZ (Theory of Inventive Problem Solving) is applied to understand the problem area during design improvement. The technical parameters were identified in the problem area to explain the conflicts in design improvement. These technical parameters were used to assist problem solving and improve design functions. A case study was done on a temporary construction operation, and demonstrated that the organized idea creation can help improve the design value of the temporary construction operation.

An Experimental Study on the Stability of Inclined Earth Retaining (지주식 흙막이의 안정성에 관한 실험적 연구)

  • Seo, Min-Su;Im, Jong-Chul;Jeong, Dong-Uk;Yoo, Jae-Won;Koo, Young-Mo;Kim, Gwang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.99-110
    • /
    • 2012
  • Inclined Earth Retaining Structure Method (IER method, briefly) is developed in order to improve the existing earth retaining method. In IER method, there are three main structures, front support, back support, and head binding. Especially, back support acts the role that reduces the earth pressure acting on the front support. In this study, the stability according to the installation angle and stiffness of front or back support is analysed by model tests. By the test results, it is known that inclined back support is very effective to reduce the earth pressure acting on the front support. Especially, the effect of the stiffness and installation angle of back support is analysed.

A Study on the Development of Flowable Fill Materials for H-pile (가시설 H-pile의 유동화 채움재 개발)

  • Jeong, Won-Jeong;Im, Jong-Chul;Kim, Tae-Hyo;Joo, In-Gon;Kang, Hyun-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.39-50
    • /
    • 2011
  • Nowadays, H-piles are usually used as temporary retaining walls, and sometimes buried in the ground after construction. The purpose of this study is the development of flowable fill materials that are easy to fill holes of retaining wall structure and minimize friction during pulling out H-pile. The first test was performed to decide mix proportion that is reasonable for purpose, in the second test, direct shear test was performed to get pullout resistance between flowable fills material and H-pile, and one dimensional consolidation test was performed to analyze the compressibility. In the test result, it showed that flowable fill material mix proportion is 350-450% of water, 70-100% of cement and 70-100% of sand based on the bentonite weight.