• Title/Summary/Keyword: 가스-액체

Search Result 592, Processing Time 0.024 seconds

Rocket Engine Test Facility Improvement for Hot Firing Test of 75 ton-f Class Gas Generator and Cold Flow Test (75톤급 가스발생기 연소시험을 위한 시험장 개선 및 수류시험)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.29-33
    • /
    • 2009
  • On the basis of the development experience of a gas generator for the 30 ton-f thrust liquid rocket engine combustor a Subscale Ground Firing Test Facility was designed and fabricated for a gas generator for the 75 ton-f thrust liquid rocket engine combustor. The Subscale Ground Firing Test Facility developed is going to be used to develop 75 ton-f class gas generator. Acquired data and test technique from this facility will be used to develope the high performance liquid rocket engine combustor and the Ground Firing Test Facility. This report describes the improved Subscale Ground Firing Test Facility for 75 ton-f class gas generator and results of the cold flow test.

  • PDF

Design of Hydrogen Peroxide Turbopump and Water Test (과산화수소 터보펌프 설계 및 수류시험)

  • Lee, Sung-Gu;Park, Dae-Jong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.317-320
    • /
    • 2011
  • Hydrogen peroxide turbopump was designed for bi-propellant liquid rocket engine using hydrogen peroxide and kerosene as propellants. Turbopump operation was verified through water tests. Design conditions of hydrogen peroxide turbopump were determined, and impeller was designed. Turbine which drives pump was selected from commercial turbocharger. Gas generator was designed by reference from turbine map. Pump, turbine, gas generator were integrated, and turbopump system was constructed. Turbopump supplied water by 1.47 bar of pressure and as well as 3.4 kg/s of mass flow rate.

  • PDF

Performance Dispersion Analysis and Applications of Gas Generator Cycle Liquid Rocket Engine (가스발생기 사이클 액체 로켓 엔진의 성능 분산 해석 및 활용)

  • Nam, Chang-Ho;Cho, Won-Kook;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.191-195
    • /
    • 2006
  • It is definitely required to control dispersion of the rocket engine performance in order to accomplish the mission of a launch vehicle successfully. A performance dispersion analysis was conducted for a gas generator cycle liquid rocket engine and the required pressure drops were estimated for engine tunning. As a result, the vacuum thrust dispersion of the engine was from +9.1% to -8.7% and the mixture ratio deviated from +9.7% to -9.6% from the nominal value due to the errors of components and the engine inlet condition of propellants. The required pressure drop in the LOx line to the combustor is higher than in the fuel line for same mixture ratio change.

  • PDF

Numerical analysis on curtain cooling in Liquid Rocket Engine of 10tf-thrust Level using Kerosene as a Fuel (케로신을 연료로 하는 10톤급 액체로켓엔진의 막 냉각에 관한 해석적 연구)

  • 남궁혁준;한풍규;조원국
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.78-82
    • /
    • 2003
  • The cooling mechanism for a regenerative cooling liquid rocket engine of 10tf-thrust using kerosene as a fuel was studied from the viewpoint of curtain cooling. Based on the concept of a highly-stratified gas flow in the combustion chamber, the cross section of the combustion chamber was spilt into 2 independent parts, core and exterior part. Additional fuel is injected into the exterior section and gas temperature can be reduced in the exterior section. Consequently, the heat flux into the coolant and wall temperature are reduced and the thermal stability of a liquid rocket engine could be improved.

  • PDF

An Experimental Study of a Diffuser Test Rig for Simulating High-Altitude Environment by using Hot (고온 연소가스를 이용한 고공 환경 모사용 디퓨저 실험장치 연구)

  • Yang, Jae-Jun;Lee, Yang-Suk;Kim, Yoo;Ko, Young-Sung;Kim, Yong-Wook;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.31-34
    • /
    • 2007
  • Performance tests of supersonic exhaust diffuser were conducted by using hot combustion gas for simulating high-altitude environment. The test rig consists of a combustion chamber, a vacuum chamber, water cooling ring and diffuser. Before combustion experiments, the preliminary leak tests were carried out on the liquid rocket engine and diffuser by using high pressure nitrogen(30barg) and a vacuum pump. The leak test results showed that there was no leaks at high pressure and vacuum pressure conditions.

  • PDF

Development of Performance Analysis Program for Gas Generator Cycle Rocket Engine (가스발생기 사이클 로켓엔진 성능해석 프로그램 개발)

  • Cho, Won-Kook;Park, Soon-Young;Seo, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.18-25
    • /
    • 2008
  • A performance analysis program has been developed for the gas generator cycle liquid rocket engine. This program predicts the system performance with the performances of subsystems which are evaluated by the models based on another analyses or experiments. The analysis method has been validated by comparing the engine performance against the published conceptual design. The performance models of the subsystems have been verified to give reasonable results by comparing with the MC-1 engine design and the system analysis of 10 ton thrust engine. The system performance of the 30 ton thrust rocket engine using LOx/Jet-A1 has been presented as an application example.

A Study on the Cooling Mechanism in Liquid Rocket Engine of 10tf-Thrust Level using Kerosene as a Fuel (케로신을 연료로 하는 10톤급 액체로켓엔진의 냉각 기구에 관한 연구)

  • Han, Pung-Gyu;Nam-Gung, Hyeok-Jun;Jo, Won-Guk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.66-72
    • /
    • 2003
  • The cooling mechanism for a liquid rocket engine of 10tf-thrust using kerosene as a fuel was studied from the viewpoint of both the regenerative and curtain cooling. Based on the concept of a highly-stratified gas flow in the combustion chamber, the cross section of the combustion chamber was spilt into 2 independent parts, core and exterior part. Additional fuel is injected into the exterior section and gas temperature can be reduced in the exterior section. Consequently, the heat flux into the coolant and wall temperature are reduced and the thermal stability of a liquid rocket en g i.ne could be improved.

Experimental research trends on Pressure Core Samples (압력 코어를 이용한 현장 가스 하이드레이트 함유 시료 연구 현황)

  • Lee, Joo Yong;Jung, Jaewoong;Ryu, Byung Jae;Lee, Jaehyung;Kim, Sejoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.124.1-124.1
    • /
    • 2011
  • 저온 고압의 환경에서 안정한 하이드레이트 함유 퇴적물 연구를 위하여 현장의 압력을 유지하여 코어를 회수할 수 있는 압력 코어러 (Pressure Corer)가 개발된 이후로 다양한 방법으로 압력코어를 이용한 연구가 진행되어 왔다. 하이드레이트의 안정영역 특성상 일반 코어러 샘플에서는 하이드레이트 함유 퇴적물의 회수가 용이하지 않았던 이유로 압력코어샘플응 이용한 현장 하이드레이트 함유 퇴적물의 연구는 필수적이다. 초기 단계에서는 압력코어를 이용한 비파괴 검사와 단순 감압 시험이 이루어졌다. 비파괴 검사를 통하여서는 X-ray 단면, 감마 밀도 (gamma density), 음파 속도 등이 측정 되었으며 감암 시험을 통하여서는 시료 내 하이드레이트 함유량을 산정하였다. 감압 후 다양한 지화학 분석이 후행되었다. 가스 하이드레이트 함유 퇴적물의 물성과 생산 거동이 점차 부각됨에 따라 압력코어 시료를 순간 감압하여 액체 질소에 보관하였다가 압밀시험, 삼축 압축 시험 등 물성 시험이 수행되었으며 수행 동안 X-ray 단면, 비저항, 음파 속도 등의 물성측정이 이루어졌다. 또한 액체 질소 보관 시료를 이용하여 감압법, 열염수 주입법, 열자극 법 등을 적용하여 생산 실험을 수행하기도 하였다. 이후에 압력코어 시료 절단 및 이동 시스템이 개발됨에 따라 보다 다양하고 많은 연구자 들이 압력코어 시료를 이용할 수 있게 되었으며 물성 연구뿐만 아니라 미생물 연구에 까지 압력코어 시료가 사용되게 되었다. 최근에는 절단 시료를 이용한 생산 실험 연구 또한 진행되었다.

  • PDF

Turbopump System Performance Design for Conceptual Design of Separate Flow Cycle LRE System (개방형 액체로켓엔진시스템 개념설계를 위한 터보펌프시스템 성능설계)

  • Yang Hee-Sung;Park Byung-Hoon;Kim Won-Ho;Ju Dae-Sung;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.128-133
    • /
    • 2005
  • In this study, performance design programs for components of a turbopump unit (TPU) in a Liquid Rocket Engine (LRE), that has non-cryogenic centrifugal pumps and 1-stage impulse turbine with partial admission nozzle, were developed. The programs were integrated in a TPU module by balancing the mass flow rate for pump-turbine power, and the module was inserted into the LRE system conceptual design program. The fundamental design conditions, satisfying LRE system requirements and minimum mass flow rate condition of gasgenerator, were found and compared with data from a Russian liquid rocket engine.

  • PDF