• Title/Summary/Keyword: 가스화 연료전지

Search Result 124, Processing Time 0.026 seconds

A Study on SOH estimation for lithium-ion battery based on joint estimation between partial capacity and recursive least square estimation method (미소 용량 및 재귀 최소제곱 추정 기법을 이용한 리튬이온 배터리의 SOH 추정 기법 연구)

  • Park, Seongyun;Cho, Inho;Ryu, Joonhyoung;Kim, Youngmi;Park, Sungbeak;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.209-211
    • /
    • 2020
  • 운송기관의 온실가스 저감을 위해 배터리-수소연료전지 하이브리드 철도추진시스템에 대한 연구가 활발히 진행되고 있다. 이 중 배터리는 빠른 응답 특성으로 하이브리드 철도추진 시스템의 효율을 극대화 시키기 위해 주요 전원으로 사용되고 있어, 시스템의 안전성 및 신뢰성을 높이기 위해 정확한 열화추정이 요구되고 있다. 본 논문에서는 사전 모델의 수립이 필요하지 않고 미소 용량 및 폐회로 제어가 가능한 재귀 최소제곱 추정 기법을 이용한 리튬이온 배터리의 SOH 추정 기법을 제안하였으며, 1S18P 배터리 모듈을 통해 열화 추정결과를 검증하였다.

  • PDF

Feasibility Evaluation of Glass-ceramic Sealant for SOFC (SOFC용 결정화계 밀봉재 특성평가 및 단전지 실증평가)

  • Lee, InSung;Kim, YeongWoo;Park, YoungMin;Bae, HongYoul;Ahn, JinSoo;Kim, InTae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.88.1-88.1
    • /
    • 2011
  • SOFC는 사용되는 셀의 디자인에 따라 튜브형, 평판형으로 구분되어진다. 평판형의 경우에는 전해질 지지형(ESC), Anode 지지형(ASC) 및 금속 지지형(MSC)로 크게 나눌 수 있다. SOFC 스택은 이와 같은 셀과 밀봉재, 집전체, 분리판의 구성요소를 여러 장으로 적층하여 이루어진다. SOFC 발전시스템은 SOFC 스택과 EBOP, MBOP로 구성되는데, SOFC 발전시스템의 상용화를 위해 선행되어야 할 것은 스택의 안정적 출력 및 신뢰성 확보이다. 즉, 셀, 밀봉재, 분리판 및 집전체로 대변되는 구성요소들이 스택에 장착되었을 때 그 기능을 최대한 발휘하면서도 점진적 또는 급격한 품질저하가 발생되지 말아야 한다. 특히, 밀봉재의 경우 SOFC에 사용되는 연료와 공기의 혼합(Cross-over)을 방지하는 중요한 기능을 담당하고 있으며 여러 장 적층된 분리판의 전기적 단락을 방지해야 한다. 또한 SOFC의 특성상 $700^{\circ}C$ 이상의 고온에서 다른 구성요소와 화학적 반응이 없어야하고 열싸이클(Thermal cycle)을 견딜 수 있도록 충분한 기계적 강도가 보장되어야 하는 등 요구되는 품질기준이 엄격하다. SOFC의 밀봉재는 접합형(Brazing), 압착형(Compressive), 용융-고정형(Glass-ceramic)이 대표적으로 적용되고 있다. 이 중에서 Brazing 물질과 방법은 현재 활발히 연구가 수행 중에 있지만 범용적으로 사용되고 있지는 않은 상태이고 Compressive 밀봉재와 Glass-ceramic 밀봉재가 대면적 SOFC 스택에 사용되어 적용 가능성을 평가받고 있다. 본 연구에서는 SOFC 구성요소의 국산화를 추진하는 지경부과제의 결과물 중 (주)써모텍에서 개발한 Glass-ceramic 밀봉재(RC1) 단품에 대한 특성평가와 실제 단전지 평가를 통해 SOFC 스택 적용 가능성을 평가하였다. 밀봉재 단품에 대한 특성평가는 용융특성, 상분석, 열팽창계수 등의 물리적, 화학적 평가 외에 가스 누설 정도를 평가하는 기밀도 평가와 SOFC의 작동 온도인 $700^{\circ}C$와 상온 분위기를 주기적으로 인가하는 Thermal cycle 특성을 평가하였다. 셀을 한 장 사용하는 단전지(Unit cell) 평가는 RIST에서 자체 제작한 $100{\times}100mm^2$ 평판형 ASC 셀을 사용하여 수행하였으며, 밀봉재는 Dispensing 공정을 통해 구성되었다.

  • PDF

Design of Excess Flow Device for Automotive Cylinder Valve Based on Finite Element Analysis (유한요소 해석을 이용한 자동차 압력 용기 밸브용 과류 방지 장치의 설계)

  • Lee, Hyo-Ryeol;Kwon, Dae-Hwan;Shin, Jin-Oh
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.19-29
    • /
    • 2021
  • Due to the climate changing, the world's countries are tightening regulations on CO2 and air pollutants emission to solve them. In addition, eco friendly vehicles is increasing to replace automobiles in internal combustion engine. Recently, the government is supporting the expansion of hydrogen refueling infrastructure and localization of core equipment in refueling facilities according to the hydrogen economy road map. In this study, design of the Excess flow limiting device in FCEV cylinder valve using by finite element analysis and performed performance tests on prototype. Major test results as hydrostatic strength, continued operation, operation, pressure impulse, leakage showed that the excess flow limiting device meets the performance requirements according to ISO 12619-2 and ISO 12619-11.

Artificial Photosynthesis System Containing CO2 Conversion Process (이산화탄소 변환 과정이 포함된 인공 광합성 시스템)

  • Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • This paper presents an integrated photochemical reaction system (i.e., an artificial leaf) that uses earth-abundant catalysts for artificial photosynthesis with a carbon dioxide ($CO_2$) fixation process. The performance of the system was investigated in terms of the energy capture and conversion capabilities. A wireless configuration was achieved by directly doping cobalt oxide as an oxygen-evolving catalyst for water splitting reaction on the illuminated surface of photovoltaic (PV) cell, as well as molybdenum disulfide ($MoS_2$) as an efficient catalyst for $CO_2$ reduction on the back substrate surfaces of the PV cell. The system produces hydrogen and carbon monoxide (CO) as sustainable fuels (i.e., synthesis gas) at around 4.5% efficiency, which implies more than 75% catalytic efficiency at the cathode. The process of solar-driven $CO_2$ conversion and water-splitting reaction is contained in one system, which is one step closer to the successful realization of artificial photosynthesis.

Si@C/rGO Composite Anode Material for Lithium Ion Batteries (리튬 이온 전지용 음극으로서의 Si@C/rGO의 합성)

  • Chaehyun Kim;Sung Hoon Kim;Wook Ahn
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.2
    • /
    • pp.73-79
    • /
    • 2024
  • As the use of fossil fuels has gradually increased, so has the emission of greenhouse gases such as carbon dioxide, leading to environmental problems. As a result, lithium-ion batteries (LiB) have emerged as the solution to this issue. To manufacture medium to large-sized lithium-ion batteries (LiB), it requires electrodes with high capacity and fast charging capabilities. Silicon (Si) is considered a next-generation anode with high-capacity properties, so, reduced graphene oxide (rGO) was compounded with Si@resorcinol-formaldehyde resin (RF) composite to prevent the volume expansion of Si. It was confirmed that the composite anode prepared exhibited improved capacity and enhanced stability.

Electrochemical Stability of Co-Mo and Ni-Mo Intermetallic Compound Electrodes for Hydrogen Electrode of Alkaline Fuel Cell (알칼리형 연료전지의 수소극용 Co-Mo 및 Ni-Mo 금속간화합물 전극의 전기화학적 안정성)

  • Lee C. R.;Kang S. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.150-155
    • /
    • 1999
  • The Electrochemical stabilities of the Brewer-Engel type intermetallic compounds of Co-Mo $(35 wt\%)$ and Ni-Mo$(35 wt\%)$ manufactured by the arc-melting method for the hydrogen electrode of $H_2-O_2$ alkaline fuel cell were investigated. Effects of temperature and concentration on the electrochemical behavior of the electrodes in the $80^{\circ}C$ 6 N KOH solution deaerated with $N_2$ gas were studied by electrochemical methods. The effect of overpotential on the electrochemical stabilities of Co-Mo and Ni-Mo intermetallic compounds was also discussed under the normal operation condition of AFC. It was shown that Co-Mo electrode had lower electrochemical stability as compared to Ni-Mo. In the case of Co-Mo electrode, a simultaneous dissolution of cobalt and molybdenum has occurred at low anodic overpotential form equilibrium hydrogen electrode potential, but the dissolution of cobalt was serious, and Co(OH)l layer on the electrode surface formed at the high anodic overpotential. In contrast the Ni-Mo electrode had high electrochemical stability because formation of the dense and thin protective $Ni(OH)_2$ layer prevented the dissolution of molybdenum.

Removal of Odorants by Selective Adsorption from Natural Gas for Protection of Steam Reforming Catalyst in Fuel Cell from Sulfur Poisoning (연료전지용 개질기 촉매의 피독방지를 위한 천연가스 중의 황성분 부취제의 선택적 흡착제거)

  • Oh, Sang-Seung;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.337-343
    • /
    • 2007
  • The reforming catalyst and the electrodes in fuel cells can be poisoned by the organic sulfur compound which is added as an odorant for checking out the leakage of natural gas, and that makes a big problem of system degradation. In this study, various adsorbents, such as silica, ${\gamma}$-alumina, activated carbon, HZSM-5, Ultra-stable Y zeolite (USY), and beta zeolite (BEA), were utilized to remove tetra-hydrothiophene (THT) and tert-butylmercaptan (TBM), and to confirm the performance in the adsorption of those odorants by using a continuous adsorptive bed. The effects of Si/Al ratio of zeolites, adsorption temperature and the type of balance gas (methane or He) on the adsorption performance in the packed bed have been investigated. In addition, the competitive adsorption between TBM and THT on the adsorbents was also estimated. The result shows that H-type BEA zeolite exhibited the highest adsorption capacity for TBM and THT odorant, and the higher amount of THT was removed adsorptively on the same adsorbent than TBM. The physical and chemical adsorption of those compounds on acid sites of zeolite were confirmed by temperature programmed desorption (TPD) and infrared spectrum (IR) analyses.

Performance Analysis of Hybrid SOFC/Uncooled GT System for Marine Power Applications (선박동력용 SOFC/GT(무냉각) 하이브리드시스템의 성능 평가)

  • Kim, Myoung-Hwan;Kil, Byung-Lea
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1050-1060
    • /
    • 2012
  • As an approach to high-efficiency of SOFC system, SOFC/GT Hybrid system is effective. However, if the output size of the system belongs to the marine class of dozens MWs, the introduction of the cooling system of GT system, which is used as sub-system, makes its related devices complicated and also makes its control difficult. Accordingly, for the marine use, SOFC/GT (non-cooling)Hybrid system looks more suitable than SOFC/GT(cooling)Hybrid system. This study established the SOFC/GT (non-cooling)Hybrid system, and examined the operating temperature & current density of the stack for the system, pressure ratio of the gas turbine, the influence of TIT(Turbine Inlet Temperature) on system performance, etc. through the simulation process. Through this research process, this study was able to confirm that electrical efficiency rises in spite of the increase in the required power for the air compressor, and there exists a limited range of temperatures for operation in TIT.

Trend Evaluation of Self-sustaining, High-efficiency Corrosion Control Technology for Large-scale Pipelines Delivering Natural Gas by Analyzing Patent Data (특허데이터 분석을 통한 천연가스 공급용 대규모 파이프라인을 위한 자립형 고효율 부식 방지 기술의 동향평가)

  • Lee, Jong-Won;Ji, Sanghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.730-736
    • /
    • 2019
  • The demand for natural gas, which is considered an environmentally friendly energy source, is increasing, and at the same time, the market share of large pipelines for natural gas supply is increasing continuously. On the other hand, the corrosion of such large pipelines reduces the efficiency of natural gas transportation. Therefore, this study aims to establish a strategy for securing the patent rights of related technologies through quantitative analysis of patents on energy-independent high-efficiency corrosion prevention technology for large-scale pipelines for natural gas supply. In this patent technology trend study, Korean, US, Japanese, and European patents filed, published, and registered by June 2018 were analyzed, and a technical classification system and classification criteria were prepared through expert discussion. To use fuel cells as an external power source to prevent the corrosion of natural gas large-scale pipelines, it is believed that rights can be claimed using an energy control system and methods having 1) branch structures of pipeline and facility designs (decompressor/compressor/heat exchanger) and 2) decompression/preheating and pressurization/cooling technology of high pressure natural gas.

A Development of Green Transportation Design for Special Identity of Jecheon Area - centered on Exterior Design for Development of Design Business - (제천지역의 특성화를 위한 친환경운송수단 디자인개발 - 디자인비즈니스 개발을 위한 익스테리어 디자인을 중심으로 -)

  • Mun Keum-Hi
    • Archives of design research
    • /
    • v.19 no.4 s.66
    • /
    • pp.175-186
    • /
    • 2006
  • In the 21C, each nation controls exhaust fumes from automobiles and makes an effort to develop alternative energy because of serious environmental problem. Jechon area has many historical and cultural archeological sites. And Jechon city sponsors various cultural events. But the way of transportation which is connected with Jecheon and around sightseeing places is general and not ready yet. Therefore, if a special means of vehicle is developed, it could play an another role of sightseeing resources. Special identity of Jecheon area for establishment of green vehicle traffic system which gives Jecheon area specific character was investigated for theoretical background. Traffic system was studied for establishment of direction through existent successful case study. Moreover content, method, structure and advantage & shortcoming etc. of vehicle that use green energy resource such as solar car, fuel cell car, hybrid car, natural gas car etc. were examined. The suitable means of vehicle for Jechon area was proposed to three directions with research and investigation. After comparison and investigation by inquiry of each section's experts, the most suitable traffic system of which energy resource of car, form of vehicles, the complement, dimension of vehicles etc. were decided. Design proposal should be drawn according to process of automobile design in decided direction. Special Exterior design of vehicle that use green energy resource connecting Jecheon and around area should be suggested in Jecheon City Hall and Chungchong-bukdo provincial office for vivify image of cleanliness area.

  • PDF