• 제목/요약/키워드: 가스하이드레이트 포화도

검색결과 16건 처리시간 0.024초

울릉분지 현장 시료와 F110표준사를 이용한 GH함유토의 열전달 양상 분석 (Characterization of thermal conduction for gas hydrate bearing in-situ sediments)

  • 김영진;윤태섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.148.1-148.1
    • /
    • 2011
  • 본 연구에서는 가스 하이드레이트의 미래 상업생산을 위한 연구활동으로 동해 울릉분지 현장시료를 채취하여 가스 하이드레이트 함유토의 열전도 현상에 관한 연구를 실시하였다. 두 종류의 현장시료를 이용하여 메탄 하이드레이트를 생성하여 공극비 및 포화도에 따라 조건을 달리하여 실험을 수행하였다. 열전도도 측정을 위하여 Transient Plane Source (TPS) 기법을 이용하였다. 현장시료의 사용에 앞서 예비실험으로써 F110표준사를 사용, 비교 분석 자료로써 활용하였다. 하이드레이트 생성 확률을 높이는 기법으로써 불포화시료를 동결, 해동 후 가스를 주입하였으며 동결된 불포화 시료의 열전달양상의 변화를 함께 고찰하였다. 실험결과, 하이드레이트의 포화도가 증가함에 따라 함유토의 열전도도의 증가함을 알 수 있어다. 거의 동일한 물과 GH의 열전도도에도 불구하고 하이드레이트 결정화 작용으로 동일한 포화도의 불포화 시료와 비교하여 약간의 상승을 보였다. 또한 공극비 및 흙을 구성하는 미네랄의 성분에 따라 열전도도의 발현 양상이 상이함을 관찰하였다. 이에 차후 하이드레이트 생산을 위한 현장 측정 및 전산 모사시 이에 관한 고려가 필요할 것으로 사료된다.

  • PDF

동해 울릉분지의 가스 하이드레이트 산출형태와 퇴적물 특성의 관계 (Relationships between Gas Hydrate Occurrence Types and Sediment Characteristics in the Ulleung Basin, East Sea)

  • 김대하;박장준;이진혁;류병재;김지훈;천종화;;장찬동
    • 자원환경지질
    • /
    • 제45권4호
    • /
    • pp.397-406
    • /
    • 2012
  • 2010년 2차 울릉분지 가스 하이드레이트 시추 (UBGH2)를 통하여 총 10개 정점에서 가스 하이드레이트 함유 퇴적물 코아를 채취하였다. 이 연구에서는 열화상 분석과 입도분석 결과에 따라 퇴적물 입도분포, 온도 이상(${\Delta}T$), 가스 하이드레이트 포화도, 가스 하이드레이트 산출형태간의 상관관계를 연구하였다. 가스 하이드레이트는 유형 I(니질층의 단열을 충진하는 형태), 유형 II(니질층의 산재하는 형태), 그리고 유형 III(사질층의 공극을 충진하는 형태)로 분류하였다. 입도분석 결과, 유형 I과 II는 가스 하이드레이트 함유 및 미함유 구간 모두 입도가 유사한 니질층으로 이루어진 반면, 유형 III는 입도가 뚜렷이 구별되는 사질층과 니질층으로 이루어져 있다. 유형 III에서는 모래 함량이 증가할 수록 가스 하이드레이트 포화도가 증가함을 확인하였다. 열화상에서 분석된 ${\Delta}T$는 가스 하이드레이트 산출형태와 상관없이 가스 하이드레이트 포화도와 비례하는 경향을 보인다. 시추지점의 암상과 탄성파 단면의 특징에서 보면, 탄성파 단면에서 침니 구조가 나타나는 지점은 유형 I이, 사질층이 거의 없는 분지사면에서는 유형 II가, 저탁류 사질층이 자주 협재하는 지점에서는 유형 III가 우세하게 나타난다. 이와 같은 특징으로 보아 가스 하이드레이트 산출형태는 가스 하이드레이트 함유 지층의 지질학적 특징과 관련 있으며, 특히 퇴적물의 입도분포에 큰 영향을 받음을 보여준다.

미고결 퇴적층내 가스하이드레이트 포화도 계산 (Calculation of Gas Hydrate Saturation Within Unconsolidated Sediments)

  • 김길영
    • 지구물리와물리탐사
    • /
    • 제15권2호
    • /
    • pp.102-115
    • /
    • 2012
  • 이 논문은 퇴적물내 포함되어 있는 가스하이드레이트의 포화도를 계산하는 여러 방법에 대하여 토론하고자 한다. 가스하이드레이트의 포화도를 계산하는 방법은 물리검층 자료를 이용하는 방법과 코어자료(압력코어 포함)를 이용하는 방법, 그리고 탄성파 탐사자료로부터 얻을 수 있는 속도 자료를 이용하는 방법 등 크게 세가지 방법으로 나눌 수 있다. 물리검층 자료중 전기비저항 자료를 이용하는 방법의 경우 Archie 식을 주로 이용하는데 이 경우 각각의 변수 값을 정확하게 정의하는 게 중요하다. 또한 가스하이드레이트의 산출형태도 포화도 계산에 큰 영향을 주기 때문에 주의해야 한다. 코어자료를 이용하는 경우 공극수의 염소량을 측정하는 방법과 압력코어를 취득할 경우 이를 이용하는 방법이 있다. 지금까지 발표된 정량적이고 가장 정확한 가스하이드레이트 포화도값을 구할 수 있는 방법이 압력코어를 이용하는 것이다. 그러나 이는 비용과 시간이 많이 소요되기 때문에 연속적인 자료를 얻기가 어렵다는 단점이 있다. 지금까지 발표된 가스하이드레이트 포화도 값을 비교해 보면 전기비저항 값을 이용한 경우가 가장 높은 값을 압력코어를 이용하여 측정한 경우가 가장 낮은 값을 보여주는 경향이 있다. 그러나 이러한 값이 모든 경우에 있어서 절대적인 경향을 보여준다고 볼 수는 없다. 그러므로 가스하이드레이트의 포화도를 정확하게 계산하기 위해서는 여러 가지 방법을 이용하여 계산해야 하며 이를 비교하여 가장 적절한 값을 사용해야 할 것이다.

다양한 입도분포에서의 하이드레이트 함유량에 따른 물성 변화 양상 연구 (Physical property evolution along gas hydrate saturation for various grain size distribution)

  • 정재웅;이재형;이주용;이민희;이동건;김세준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.149-149
    • /
    • 2011
  • 청정 에너지원으로 높은 잠재력을 가지고 있는 가스하이드레이트는 상업적 기술개발이 미확보된 상태임에도, 우리나라에서 부존이 직접적으로 확인되었기 때문에 에너지원으로서 그 중요성이 부각되고 있다. 현재 전세계적으로 가스하이드레이트 개발 및 생산에 관한 연구가 활발히 진행되고 있으며 이에 대한 기초자료로서 가스하이드레이트가 함유된 퇴적층의 물성자료가 필요하다. 이에 따라 본 연구에서는 입도 분포별 총 5가지의 미고결 시료를 대상으로 투과도, p파속도, 전기비저항 측정을 수행하였다. 연구에 사용된 미고결 시료는 Hama#5($774{\mu}m$), #6($485{\mu}m$), #7($258{\mu}m$), #8($106{\mu}m$) 4가지와 Hama#6과 Hama#7을 1:1($371{\mu}m$)로 혼합하여 사용하였다. 실험에 사용된 장비는 가스하이드레이트를 인공적으로 생성시키기 위해 퇴적층을 모사할 수 있는 고압셀과 자료획득장비, 유체 주입장비, 온도 유지장비이다. 또한 투과도 측정에는 차압계, 전기비저항 측정에 RLC meter, p파속도 측정에 음파 송수신장비를 사용하여 각각의 물성을 측정하였다. 실험과정을 단계별로 요약하면 먼저 시료를 고압셀에 충진한 뒤 주입된 물의 양으로부터 공극률을 측정하고, 절대 투수계수를 측정하였다. 그 후, 메탄가스를 주입하여 퇴적층 내 수포화도(water saturation)를 잔류상태(irreducible saturation)로 유지시키고 메탄가스를 추가적으로 주입하여 원하는 압력까지 가압한 뒤 온도를 $1^{\circ}C$로 낮추었다. 가스하이드레이트의 생성은 급격한 압력강하로부터 알 수 있다. 최종적으로 가스하이트레이트가 함유된 퇴적층의 상대 투수계수를 측정하기 위해 메탄가스를 주입하였고 각각의 측정장비를 통해 전기비저항 및 p파 속도를 측정하였다.$V_g$, $V_h$, $V_w$, $V_ss$는 각각 가스의 부피, 하이드레이트의 부피, 물의 부피, 모래의 부피이다. 또한 수포화도, $S_w=\frac{V_w}{V_v}$이며 하이드레이트 포화도, $S_h=\frac{V_w}{V_v}$, 가스 포화도, $S_g=\frac{V_g}{V_v}$로 정의된다. 본 실험의 결과 투과도는 가스의 부피비, $\frac{V_g}{V}=nS_g$에 민감한 반응을 보였으며, 비저항은 공극수의 부피비, $\frac{V_w}{V}=nS_w$에 민감한 반응을 보였다. 또한 p파 속도는 고체의 부피비, $\frac{V_s+V_h}{V}=n(1-S_h)$에 민감한 반응을 보였다. 이러한 실험의 결과는 가스하이드레이트 개발, 생산 연구에 있어 기초 물성자료로 활용되는데 도움을 줄 것이다.

  • PDF

가스하이드레이트 포화율 및 감압률에 따른 해리특성 분석 (The Analysis of Dissociation Properties According to Gas Hydrate Saturation and Depressurization Rate)

  • 안승희;전보현
    • 한국가스학회지
    • /
    • 제19권3호
    • /
    • pp.54-59
    • /
    • 2015
  • 가스하이드레이트(GH: Gas Hydrate)는 전 세계적으로 약 10조 톤에 이르는 엄청난 양이 대부분 해양의 대륙사면에 부존되어 있으나(동토 지역 : 2 %, 해양 대륙사면 98 %), 현재까지 가스하이드레이트 저류층으로부터 상업화할 수 있을 만큼 가스를 회수하는 기술이 개발되어 있지 않은 실정이다. 일반적으로 회수하는 방법은 감압법, 열자극법, 억제재 주입법 및 치환법 등으로 크게 나누어 볼 수 있으며, 본 연구에서는 가스하이드레이트 포화율과 감압률에 따라서 가스하이드레이트 해리시간 및 가스생산이 어떻게 달라지는 지, 그에 대한 특성을 분석하고자 하였다. 연구분석 결과 감압률과 해리시간의 상관 관계식을 도출($Y=0.0004X^2-0.499X+176.86$)할 수 있었고, 또한 감압률이 클수록 메탄생산량이 좋다는 것을 알 수 있었지만(감압률 40% 대비 50%에서 메탄가스생산량이 46.2% 향상), 감압률이 60%에서는 오히려 생산량이 줄어드는데, 이는 가스하이드레이트 재형성에 기인한 것으로 판단된다.

메탄 하이드레이트 생산 묘사를 위한 수치도구의 개발 (Development of a Numerical Simulator for Methane-hydrate Production)

  • 신호성
    • 한국지반공학회논문집
    • /
    • 제30권9호
    • /
    • pp.67-75
    • /
    • 2014
  • 방대한 저장량으로 차세대 에너지원으로 평가받는 메탄가스 하이드레이트는 생산과정에서 유발될 수 있는 문제를 최소화하고 최적의 생산조건을 선정하기 위한 하이드레이트 포함한 다공질 재료의 THM 현상에 대한 프로그램의 개발이 절실하다. 기존의 해석 프로그램들은 국제공동연구를 통하여 프로그램들간의 상호 비교검증을 진행하고 있으나, 예측값의 불일치와 수렴성에 문제가 있는 것으로 나타났다. 본 논문에서는 다공질 재료내 메탄 하이드레이트의 해리 현상을 해석할 수 있는 fully coupled THM 유한요소 프로그램을 개발하였다. Methane hydrate, soil, water, 및 methane gas의 질량보존의 법칙, 에너지 보존의 법칙, 그리고 힘평형 방정식으로부터 지배방정식을 유도하였다. 다양한 주변수들의 조합을 통하여 주변수를 변위, 가스 포화도, 유체압, 온도, 하이드레이트 포화도로 선택하였으며, 상변화 전영역에서 해석이 가능하도록 하였다. 하이드레이트의 해리를 예측하는 모델은 kinetic model을 이용하였다. 개발된 THM 유한요소 프로그램을 이용하여 메탄가스 생산에 관한 Masuda의 실내 모형실험 결과와 비교적 분석을 수행하였으며, 해의 수렴성과 안정성을 확인할 수 있었다.

울릉분지 시추공 분석 자료를 이용한 가스하이드레이트 함유층의 3차원 공간 물성 분포 추정 (3D Spatial Distribution Modeling for Petrophysical Property of Gas Hydrate-Bearing Sediment using Well Data in Ulleung Basin)

  • 이동건;신효진;임종세
    • 에너지공학
    • /
    • 제22권2호
    • /
    • pp.156-168
    • /
    • 2013
  • 이 연구에서는 2007년, 2010년에 수행한 울릉분지 1, 2차 시추 지역의 시추공(UBGH1-1, UBGH1-4, UBGH1-9, UBGH1-10, UBGH1-14, UBGH2-2-1, UBGH2-2-2, UBGH2-6, UBGH2-9, UBGH2-10, UBGH2-11)에서 취득한 물리검층 및 코어분석 자료로 추정한 가스하이드레이트 함유층 주요 물성 자료를 활용하여 불균질성을 반영할 격자 수준의 3차원 공간 분포 모델링을 수행하였다. 가스하이드레이트 함유층 내 퇴적상의 공간 분포 추정을 위하여 퇴적상 추정 자료를 각 시추공별로 3차원 격자셀에 입력하고 순차지표시뮬레이션으로 3차원 분포를 모델링하였다. 가스하이드레이트 함유층의 공극률과 가스하이드레이트포화율은 퇴적상 분포 모델을 기반으로 순차가우스시뮬레이션을 통해 3차원 공간 물성 분포를 추정하였다.

압력코어를 이용한 가스 하이드레이트 탐사: ODP Leg 204 (Gas Hydrate Exploration by using PCS(Pressre Core Sampler): ODP Leg 204)

  • 이영주
    • 자원환경지질
    • /
    • 제38권2호
    • /
    • pp.165-176
    • /
    • 2005
  • 심해저 퇴적물에 분포하는 천연가스는 물리, 화학적인 조건에 따라서 세 가지 상(phase)으로 존재한다. 즉, 공극수에 녹아있는 가스의 농도가 용해도 이하이면 용존 가스 형태로 존재할 것이며, 용해도 이상이면 자유가스가(free gas) 형성될 것이며, 자유가스를 포함하는 해저 퇴적물이 저온 고압 조건인 하이드레이트 안정 지역이라면 가스 하이드레이트로 존재한다. 심해저 퇴적물내의 가스의 농도를 정확히 파악할 수 있다면 천연가스와 하이드레이트의 형성과 분포를 예측할 수 쳐다. 그러나, 해저 퇴적물 내에 포함되어 있는 가스의 양을 정확히 측정하는 것은 매우 어렵다. 심해저 퇴적층에서 가스를 채취하는 방법으로 널리 이용되는 공기층 가스 기법을 이용하여 퇴적물내의 가스의 양을 가늠하는 것은 천부 퇴적층에서만 가능하고 심부 지층에서 채취한 가스는 코어 회수와 시료 채취 과정에서 대부분의 가스가 유실되고 극히 일부만 정량 분석된다. 압력 코어(Pressure Core Sampler PCS)는 길이 $1{\cal}m$, 반경 $4.32{\cal}cm$ 규격으로 총 $1,465cm^3$의 퇴적물을 68.9 Mpa 압력 하에서 채취하는 장비이다. ODP Leg 204 시추 동안에 총 6개 지점(site) 에서 압력 코어를 사용하여 각 시추 지점에서 심도에 따른 퇴적물내의 가스의 양과 가스 하이드레이트의 분포를 측정하였다. 분석 결과 시추 위치에 따라서 가스 농도 및 분포 특성이 서로 다르게 나타났다. 하이드레이트 릿지(Hydrate Ridge)의 정상 주변에는 해저면 퇴적물에 메탄가스가 과포화되어 있고 정상 측면 및 분지지역에는 일부 심도의 퇴적물에서만 과포화되어 있었다. 하이드레이트 릿지의 가스 하이드레이트 분포는 압력 코어에 의해서 측정한 현장(in-situ)의 가스 농도 특성과 매우 밀접한 관계가 있는 것으로 나타났다.

가스하이드레이트 퇴적층 물성 추정 소프트웨어를 이용한 울릉분지 시추공 자료 해석 (Well Data Interpretation using Software Developed for Estimation of Petrophysical Properties in Gas Hydrate Bearing Sediments in Ulleung Basin, Offshore Korea)

  • 서광원;임종세
    • 에너지공학
    • /
    • 제21권1호
    • /
    • pp.55-67
    • /
    • 2012
  • 미래의 청정 에너지자원인 가스하이드레이트 개발을 위해 국내 부존이 유망한 울릉분지 5개의 지역에 대하여 2007년 시추작업을 수행하여 모든 시추공으로부터 물리검층 자료를 취득하였으며 이중 UBGH1-04, UBGH1-09, UBGH1-10 시추공에서 코어 자료를 취득하였다. 이 연구에서는 기확립한 가스하이드레이트 퇴적층 물성 추정 기법 및 UBGH1-04, UBGH1-09, UBGH1-10 시추공에서의 물성 추정 결과를 바탕으로 사용자 친화적 소프트웨어인 "KMU GH Logs 2010"을 개발하였다. 또한 코어 미회수 시추공인 UBGH1-01 및 UBGH1-14 시추공의 물리검층 자료를 이용하여 가스하이드레이트 퇴적층의 물성을 추정하였다. 밀도 검층 자료를 사용하여 공극률을 추정하였으며, 전기비저항 검층 및 음파 검층을 이용하여 가스하이드레이트포화율을 추정하였다. 물리검층 자료와 코어의 퇴적상 분석 자료를 이용하여 선형 판별 분석 기법을 통해 퇴적상을 추정함으로써 가스하이드레이트 해리의 징후가 나타나는 DITM 및 MSS 퇴적상에 대한 판별이 가능함을 확인하였다.