• Title/Summary/Keyword: 가스폭발사고

Search Result 272, Processing Time 0.025 seconds

Study on Fire.Explosion Accidents Prediction Model Development of LPG Vaporizer (LPG 기화기의 화재.폭발사고 예측모델개발에 관한 연구)

  • Ko, Jae-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.28-36
    • /
    • 2010
  • We have garnered 3,593 data of gas accidents reported for 12 years from 1995, and then analyzed the LPG vaporizer accidents according to their types and causes based on the classified database. According to the results the gas rupture has been the most common accident followed by the release, explosion and then fire accidents, the most frequent accident-occurring sub-cause is LPG check floater faults. In addition, we have applied the Poisson Probability Functions to predict the most-likely probabilities of fire, explosion, release and rupture with the LPG vaporizer in the upcoming 5 years. In compliance with Poisson Probability Functions results, in the item which occurs below 3 "LPG-Vaporizer-Fire", in the item which occurs below 5 "LPG-Vaporizer-Products Faults-Check Floater" and the item which occurs below 10 appeared with "LPG-Vaporizer-Products Faults". From this research we have assured the successive database updating will highly improve the anticipating probability accuracy and thus it will play a key role as a significant safety- securing guideline against the gas disasters.

Gas Fire Accident Cause Survey Study (가스화재사고 원인조사 연구(LP가스를 중심으로))

  • Kim, Young-Cheol;Cha, Jong-Ho
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The purpose of this paper is to report gas fire accident based on classification of the major gas fire causes (including handling mistakes, inferior goods, etc.), fire classifications (fire, explosion, leakages, etc.), damage levels(1st, 2nd, 3rd, 4th grade levels), casualties (death, serious wound, slight injury) since gas fire has been generated according to growth of gaseous fuel consumption on home and enterprises with various accident causes. Among gaseous fuels, LPG facility can be c1assified as gas container, pressure regulator, gas hose, interim valve, combustion port. Any fire or any explosion can be caused from handling mistakes, inferior goods on each parts as stated above. Exact gas fire causes shall be identified based on previous case studies on similar fires with consideration of lesson learns.

  • PDF

LPG자동차에 대한 재조명

  • Gwon, Sun-Yeong
    • LP가스
    • /
    • v.22 no.5
    • /
    • pp.6-10
    • /
    • 2010
  • 지난 8월9일 오후 서울도심 한가운데서 승객을 태운 천연가스(CNG)버스가 신호 대기중 폭발하는 사고가 발생해 승객과 길을 가던 행인 등 18명이 중경상을 입는 끔찍한 사건이 발생했다. 이 사고를 계기로 국민들은 가스자동차에 대한 막연한 불안감을 가지게 되었고 또 일부는 LPG자동차의 안전성에 의문을 가지게 되었다. 이에 LPG자동차의 안전성과 관련해서 정확한 정보를 제공하고 우리나라 LPG자동차의 대내외적 위상을 재조명해보고자 한다.

  • PDF

Quantitative Risk Assessment for Gas-explosion at Buried Common Utility Tunnel (지하 매설 공동구 내부 가스 폭발에 대한 위험성 평가)

  • Jang, Yuri;Jung, Seungho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.89-95
    • /
    • 2016
  • Keeping the gas pipelines in the common utility tunnel is useful because it has a lower risk of corrosion than conventional burial, and can prevent from excavating construction. But, explosions in common utility tunnels can cause greater damage from the blast overpressure compared to outdoor explosions, due to nature of the confined environment. Despite this fact, however, research on common utility tunnels has been limited to fire hazard and little has been studied on the dangers of explosions. This study developed scenarios of methane gas explosion caused by gas leak from gas piping within the common utility tunnel followed by unknown ignition; the study then calculated the extent of the impact of the explosion on the facilities above, and suggested the needs for designing additional safety measures. Two scenarios were selected per operating condition of safety devices and the consequence analysis was carried out with FLACS, one of the CFD tools for explosion simulation. The overpressures for all scenarios are substantial enough to completely destroy most of the buildings. In addition, we have provided additional measures to secure safety especially reducing incident frequency.

A study on the characteristics of gas explosion with vent area (밀폐공간에서 파열면에 따른 가스폭발특성에 관한 연구)

  • Kim Sang Sub;Chae Jae Ou;Jo Young Do;Jang Gi Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.53-60
    • /
    • 2003
  • Accident occurred by gas explosion in house or building causes damage on lives and properties. To avoid secondary damage, this study drew area ratio of vent area with the experiment for pressure variation with vent area versus building volume by selection of model for different size and shapes of vent area generated by explosion. In addition, Appropriate model was chosen to predict the damage by minimum pressure with the experiment of opening are shapes. This model can prevent secondary damage with the selected vent area and shape to guarantee building safety.

  • PDF

Selection of Release Scenario and Consequence Analysis for Gas Explosion by Pipe Release (배관누출에 의한 가스 폭발사고에서 누출 시나리오 선정 및 사고결과 분석)

  • Kim, Tae-Ok;Lee, Hern-Chang;Ryoo, Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.52-62
    • /
    • 2006
  • In this study, we tried to propose a selection method of release scenarios and a method of consequence analysis at a gas explosion by pipe release. Thus, release rates, damage areas of the facilities, and fatality areas were estimated and analyzed at various release conditions(temperature, pressure, release material, etc). As a results, we could conclude that the rupture was the worst case of release scenarios, and at release rates and damage areas were better estimated by the weighted average method considering a generic failure frequency of the release hole than by an arbitrary selection of the release hole.

  • PDF

A Study on the Vented Gas Explosion Characteristics of Indoor Leakage of the LPG (실내 LPG 누출시 폭발특성에 관한 연구)

  • Oh Kyu-hyung;Kim Hong;Kim Sang-sub;Jo Yoong-do;Jo Jee-whan;Oh Shin-kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.51-57
    • /
    • 1999
  • A study on the vented gas explosion characteristics were carried out with the liquified petroleum gas(LPG) which is used in domestics and industries fuel. To evaluate a damage by gas explosion and to predict a explosion hazards, a series of experiment have been performed in the regular hexahedron vessel of 270${\iota}$. A side of the vessel was made to setting a polyester diaphragm which was ruptured by explosion to simulate an accidental explosion which ruptured the window by explosion. Experimental parameters were LPG concentration, ignition position, venting area, a strength of diaphragm which was ruptured and distances from venting, Experimental results showed that vented gas explosion pressure was more affected by the diaphragm strength than the gas concentration, and the vented gas explosion pressure and blast wave pressure was increased with decreasing the venting area and increasing the strength of diaphragm. In this research we can find that a damage by vented explosion at the outside can be larger than the inside by blast wave pressure near the venting.

  • PDF

Comparison of H2, LNG, and LPG explosion characteristics in a limited space using CFD Simulation (CFD 시뮬레이션을 이용한 제한된 공간에서의 수소, LNG, LPG 폭발특성 비교)

  • Baek, Ju-Hong;Lee, Hyang-Jig;Jang, Chang Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.12-21
    • /
    • 2016
  • The demand for hydrogen is steadily increasing every year, and the facilities to produce and transfer hydrogen are being increased as well. Therefore, the possibility of a critical accident at hydrogen is expected to increase. Furthermore, the materials most likely to cause accidents at industrial sites are LPG 61%, hydrogen 12%, and LNG 10%, and the frequency of accidents due to these three combustible gases is relatively high. Thus, a CFD simulation was used to compute the explosion risk of danger-frequent combustible gases-hydrogen, LNG, and LPG-within a limited space, and the outcomes were compared and analyzed to review the risk of explosion of each gase within a limited space.

Consequence Analysis Using Release Scenario of API-581 BRD for Gas Explosion by Vessel Release (용기누출로 인한 가스 폭발사고에서 API-581 절차의 누출 시나리오에 의한 사고결과 분석)

  • Kim, Tae-Ok;Lee, Hern-Chang;Cho, Ji-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.15-24
    • /
    • 2007
  • For consequence analysis at a gas explosion by vessel release, release rates, demage areas of facilities, and fatality areas were estimated and analyzed at various conditions(release materials, temperatures, pressures, and vessel types) by using the release scenario of API-581 BRD. Simulation results showed that release rates and consequences in the vessel release were higher than those in the pipe release, and the order of release rates and damage areas was as follows; tank>reactor>drum> column.

  • PDF

LPG충전소의 BLEVE현상에 따른 피해 분석

  • Jo, Sam-Gyu;Kim, Tae-Hwan;Ham, Eun-Gu
    • LP가스
    • /
    • s.67
    • /
    • pp.26-32
    • /
    • 2000
  • 도심지내에 위치한 부천 LPG충전소 사고 조사를 통하여 가장 피해효과가 큰 탱크로리 폭발에 따른 결과를 분석하였다. 분석범위는 BLEVE 현상에 의한 방출열과 과압이 충전소 주변에 위치한 구조물이나 인체에 미치는 영향을 대상으로 실제 현장조사를 통하여 수집된 피해결과와 이론적인 모델(PHAST-Process Hazad Analysis Software Tools) 분석 결과를 비교하였다. 부천 LPG 충전소 폭발 사고의 피해효과는 방출열의 경우 두 가지 모두 큰 차이를 보이지 않았으나 과압의 경우, 실제 피해는 이론적 모델 분석결과의 약 15%정도에 해당하는 축소된 거리에서 나타났다. 또한 충전소 인근에 위치한 구조물에 대한 피해효과는 부분적으로 과압에 의한 균열 및 붕괴 현상보다는 열 효과에 의한 콘크리트 강도 저하와 성상변화가 크게 나타났다.

  • PDF