• Title/Summary/Keyword: 가스폭발력

Search Result 11, Processing Time 0.019 seconds

Vibration/Structural-Integrity Analysis for Large Diesel Engines (대형 디젤 엔진의 진동/건전성 해석)

  • 박종포
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.41-49
    • /
    • 2001
  • 최근의 대형 디젤 엔진은 고성능, 고효율 및 제작비용 절감 등의 요구에 따른 경량화, 유연화 추세로 설계되고 있는 한편, 엔진 자체에서 발생하는 고유의 큰 기전력 (가스폭발력, 왕복동 관성력, 각종 우력) 때문에 항상 진동 문제에 노출되어 있다. (중략)

  • PDF

A Study on the MESG of Flammable Ternary Gas Mixtures (3성분계 인화성 혼합가스의 MESG에 관한 연구)

  • Hwang, Kyungyong;Byeon, Junghwan;Rhee, Kyunam;Lee, Taeck-Kie
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.30-37
    • /
    • 2016
  • Electrical apparatuses for use in the presence of flammable gas atmospheres have to be specially designed to prevent them from igniting the explosive gas. Flameproof design implies that electrical components producing electrical sparks are contained in enclosures and withstand the maximum pressure of internal gas or vapours. In addition, any gaps in the enclosure wall have to designed in such a way that they will not transmit a gas explosion inside the enclosure to an explosive gas or vapours atmosphere outside it. In this study, we explained some of the most important physical mechanism of MESG(Maximum Experimental Safe Gap) that the jet of combustion products ejected through the flame gap to the external surroundings do not have an energy and temperature large enough to initiate an ignition of external gas or vapours. We measured the MESG and maximum explosion pressure of ternary gas mixtures(propane-acetylene-air) by the test method and procedure of IEC 60079-20-1:2010. As a result, the composition of propane gas that has lower explosive power than acetylene gas in the ternary gas mixtures makes greater effects on MESG and explosion pressure.

Design of Seat Belt Pretensioner driven by Elastic Force (탄성력 기반 안전벨트 프리텐셔너 설계)

  • Yongsu Lee;Seyun Park;Hyuneun Lee;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.545-550
    • /
    • 2023
  • A pretensioner is a safety device that protects occupants by pulling the seat belt in the event of a vehicle collision. However, since the pretensioner is driven by a explosive method, it is necessary to replace not only the gas generator but also all connecting parts including the manifold after an accident. Therefore, in this paper, we propose an elastic force-based pretensioner that can be used safely and semi-permanently. After analyzing the operating mechanism of the existing pretensioner from a thermodynamic/dynamic point of view, the spring stiffness that can be deployed within an appropriate operating time was determined by converting the gas explosion energy into elastic energy. In addition, the coil spring shape that satisfies the elastic stiffness was designed in consideration of the vehicle interior installation standard. Finally, the operating performance of the pretensioner driven by elastic force was verified through fabrication.

Deflagration to detonation transition by interaction between flame and shock wave in gas mixture (가스 연료와 공기 혼합물 내 압력파와 화염의 상호 작용에 의한 연소폭발천이 현상 연구)

  • Gwak, Min-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.369-374
    • /
    • 2010
  • This paper presents a numerical investigation of the Deflagration to Detonation Transition (DDT) of flame acceleration by a shock wave in combustible gas mixture. A model consisting of the reactive compressible Navier-Stokes equations is used. The effects of viscosity, thermal conduction, species diffusion, and chemical reactions are included. Using this model, the generation of hot spots by repeated shock and flame interaction in front and back of flame and the change of detonation occurrence by various shock intensities (Ms=1.1, 1.2, 1.3) are studied. The simulations show that as the incident shock intensity increases, the Richtmyer-Meshkov (RM) instability becomes stronger and DDT occurrence time is reduced.

  • PDF

The Study of the Characteristic of Pyrotechnic Separation Devices Using Missile System and Space Craft (우주발사체 및 미사일 시스템에 이용되는 파이로테크닉 분리장치의 특성에 관한 연구)

  • Lee, Yeung-Jo;Kim, Dong-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.208-211
    • /
    • 2007
  • Separation Devices have two functions. These two functions are to bond and to separate two bodies. This paper is about separation devices which use explosives to separate their bodies. Explosive bolt is separated with two bodies when the explosives in the body detonated. The good things of explosive bolt are that it has simple operational system and it is made of few parts. But it has side effects; fragment and pyre-shock. To avoid these side effects gas expansion separation(GES) bolt and pressure cartridge actuation separation(PAS) devices are invented. These use pressure to separate their bodies. The pressure is generated when explosives are burned. But the sizes of PAS devices are bigger than explosive bolts. And GES bolt has a mechanically lower bonding ability than that of explosive bolt. When you design separation devices, it is recommended to know operational system and characteristics of separation devices, to design best one.

  • PDF

Use of dynamic absorber for reduction of shaft vibration in diesel engines of ship (축계진동 저감을 위한 동흡진기의 제안)

  • Park, Sok-Chu;Park, Kyung-Il;Kim, Jeong-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.743-748
    • /
    • 2016
  • Ship's diesel engines have intrinsic problem to make vibrations caused by cylinder explosion and unbalanced rotating mass. These vibrations might induce noises, are transferred to hull and neighboring structures and cause secondary vibrations. This paper suggests the use of an additional dynamic absorber with a sub-vibration system to reduce the aforementioned vibrations. This dynamic absorber is designed based on an analysis of the free vibration of the engine shafting system and the forced vibrations.

Experimental Evaluation of Internal Blast Resistance of Prestressed Concrete Tubular Structure according to Explosive Charge Weight (프리스트레스트 콘크리트 관형 구조물의 폭발량에 따른 내부폭발저항성능에 관한 실험적 평가)

  • Choi, Ji Hun;Choi, Seung Jai;Yang, Dal Hun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.369-380
    • /
    • 2019
  • When a extreme loading such as blast is applied to prestressed concrete (PSC) structures and infrastructures for an instantaneous time, serious property damages and human casualties occur. However, a existing design procedure for PSC structures such as prestressed containment vessel (PCCV) and gas storage tank do not consider a protective design for extreme internal blast scenario. Particularly, an internal blast is much more dangerous than that of external blast. Therefore, verification of the internal blast loading is required. In this paper, the internal blast resistance capacity of PSC member is evaluated by performing internal blast tests on RC and bi-directional PSC scaled down specimens. The applied internal blast loads were 22.68, 27.22, and 31.75 kg (50, 60, and 70 lbs) ANFO explosive charge at 1,000 mm standoff distance. The data acquisitions include blast pressure, deflection, strain, crack patterns, and prestressing force. The test results showed that it is possible to predict the damage area to the structure when internal blast loading occurs in PCCV structures.

Analysis of Exciting Forces for In-Line 4 Cylinders Engine (직렬 4기통 엔진의 가진력 해석)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • The primary objective of this study is to truly understand exciting forces of the in-line 4 cylinders engine. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand exciting forces, first was governed theoretical equations for single cylinder engine. And this theoretical equations was programming using MATLAB software. To compare theoretical analysis value, was applied MSC.ADAMS software. To determined the specification of engine(2,000cc, in-line 4) was applied ADAMS/Engine module. And this specification for engine was applied ADAMS/View and MATLAB software. The geometry model for ADAMS/View analysis was produced by the 3-D design modeling software. After imported 3-D model, each rigid body was jointed suitable. Under idle speed for engine, was analysed. The results of analysis are fairly well agreed with those of three analysis method. Using MATLAB software proposed in this study, engine exciting fores can be predicted. Also using ADAMS/Engine module and ADAMS/View software, engine exciting forces can be predicted.

  • PDF

The Localization Development for Korean Utility Helicopter's On-Board Inert Gas Generation System (한국형 기동헬기 불활성가스발생장치 국산화 개발)

  • Ahn, Jong-Moo;Lee, Hee-Rang;Kang, Tae-Woo;Choi, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.662-669
    • /
    • 2017
  • Military rotary aircraft are heavily exposed to projectile environments due to their mission characteristics, and fires caused by fuel leaks after shooting are linked directly to the loss of human life. To improve the survivability of pilots and crews, the fuel tank in rotary aircraft must have gunfire resistance and anti-explosion characteristics. Gunfire resistance can be satisfied by applying a self-sealing cell to a fuel tank. Anti-explosion can be satisfied by reducing the oxygen concentration in an explosive area and suppressing the generation of combustible fuel vapor by minimizing the evaporation rate of the fuel by heat. A Korean utility helicopter applies anon-board inert gas generation system to meet the anti-explosion requirements for ballistic impact. The generator fills the fuel tank with an inert gas and reduces the oxygen concentration. This paper describes the overall development process of the OBIGGS developed in accordance with the localization process of weapon components. OBIGGS was developed/manufactured through domestic technology, and the performance was found to be equal to or better than that of the existing products through single performance tests and aircraft mounting tests.

A Study on the Strength Analysis of the Helmets for Fire and Gas Safety (소방.가스안전용 헬멧의 강도안전성에 관한 연구)

  • Kim, Han-Goo;Shim, Jong-Hyun;Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.31-37
    • /
    • 2008
  • In this paper, the strength analysis has been presented for the stress and strain by using the finite element method for various shell models of the helmets. The advanced helmet that would provide head protection without causing discomfort to the user when it was worn for long periods of time should be manufactured for increasing the safety and workability of the workers. We need a safe, comfortable and light weight of the helmet shell structure. Thus, the helmets had to stand up to the most rigorous conditions encountered for the fire and gas explosion. The FEM computed results show that when the impulsive force is applied on the summit area of a helmet shell structure, the maximum stress and strain have been occurred around the position of an applied impact force, which may lead to the initial failure on the summit of the helmet shell. Thus, the summit area of the helmet shell should be supported by a bead frame and increased thickness of the bead. But the overall thickness of the helmet is to decrease for the light weight of a helmet.

  • PDF