• Title/Summary/Keyword: 가스예측

Search Result 1,314, Processing Time 0.021 seconds

The Effect of Carbon Dioxide Leaked from Geological Storage Site on Soil Fertility: A Study on Artificial Leakage (지중 저장지로부터 누출된 이산화탄소가 토양 비옥도에 미치는 영향: 인위 누출 연구)

  • Baek, Seung Han;Lee, Sang-Woo;Lee, Woo-Chun;Yun, Seong-Taek;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.409-425
    • /
    • 2021
  • Carbon dioxide has been known to be a typical greenhouse gas causing global warming, and a number of efforts have been proposed to reduce its concentration in the atmosphere. Among them, carbon dioxide capture and storage (CCS) has been taken into great account to accomplish the target reduction of carbon dioxide. In order to commercialize the CCS, its safety should be secured. In particular, if the stored carbon dioxide is leaked in the arable land, serious problems could come up in terms of crop growth. This study was conducted to investigate the effect of carbon dioxide leaked from storage sites on soil fertility. The leakage of carbon dioxide was simulated using the facility of its artificial injection into soils in the laboratory. Several soil chemical properties, such as pH, cation exchange capacity, electrical conductivity, the concentrations of exchangeable cations, nitrogen (N) (total-N, nitrate-N, and ammonia-N), phosphorus (P) (total-P and available-P), sulfur (S) (total-S and available-S), available-boron (B), and the contents of soil organic matter, were monitored as indicators of soil fertility during the period of artificial injection of carbon dioxide. Two kinds of soils, such as non-cultivated and cultivated soils, were compared in the artificial injection tests, and the latter included maize- and soybean-cultivated soils. The non-cultivated soil (NCS) was sandy soil of 42.6% porosity, the maize-cultivated soil (MCS) and soybean-cultivated soil (SCS) were loamy sand having 46.8% and 48.0% of porosities, respectively. The artificial injection facility had six columns: one was for the control without carbon dioxide injection, and the other five columns were used for the injections tests. Total injection periods for NCS and MCS/SCS were 60 and 70 days, respectively, and artificial rainfall events were simulated using one pore volume after the 12-day injection for the NCS and the 14-day injection for the MCS/SCS. After each rainfall event, the soil fertility indicators were measured for soil and leachate solution, and they were compared before and after the injection of carbon dioxide. The results indicate that the residual concentrations of exchangeable cations, total-N, total-P, the content of soil organic matter, and electrical conductivity were not likely to be affected by the injection of carbon dioxide. However, the residual concentrations of nitrate-N, ammonia-N, available-P, available-S, and available-B tended to decrease after the carbon dioxide injection, indicating that soil fertility might be reduced. Meanwhile, soil pH did not seem to be influenced due to the buffering capacity of soils, but it is speculated that a long-term leakage of carbon dioxide might bring about soil acidification.

Effects of climate change on biodiversity and measures for them (생물다양성에 대한 기후변화의 영향과 그 대책)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Kim, A Reum;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.474-480
    • /
    • 2016
  • In this study, formation background of biodiversity and its changes in the process of geologic history, and effects of climate change on biodiversity and human were discussed and the alternatives to reduce the effects of climate change were suggested. Biodiversity is 'the variety of life' and refers collectively to variation at all levels of biological organization. That is, biodiversity encompasses the genes, species and ecosystems and their interactions. It provides the basis for ecosystems and the services on which all people fundamentally depend. Nevertheless, today, biodiversity is increasingly threatened, usually as the result of human activity. Diverse organisms on earth, which are estimated as 10 to 30 million species, are the result of adaptation and evolution to various environments through long history of four billion years since the birth of life. Countlessly many organisms composing biodiversity have specific characteristics, respectively and are interrelated with each other through diverse relationship. Environment of the earth, on which we live, has also created for long years through extensive relationship and interaction of those organisms. We mankind also live through interrelationship with the other organisms as an organism. The man cannot lives without the other organisms around him. Even though so, human beings accelerate mean extinction rate about 1,000 times compared with that of the past for recent several years. We have to conserve biodiversity for plentiful life of our future generation and are responsible for sustainable use of biodiversity. Korea has achieved faster economic growth than any other countries in the world. On the other hand, Korea had hold originally rich biodiversity as it is not only a peninsula country stretched lengthily from north to south but also three sides are surrounded by sea. But they disappeared increasingly in the process of fast economic growth. Korean people have created specific Korean culture by coexistence with nature through a long history of agriculture, forestry, and fishery. But in recent years, the relationship between Korean and nature became far in the processes of introduction of western culture and development of science and technology and specific natural feature born from harmonious combination between nature and culture disappears more and more. Population of Korea is expected to be reduced as contrasted with world population growing continuously. At this time, we need to restore biodiversity damaged in the processes of rapid population growth and economic development in concert with recovery of natural ecosystem due to population decrease. There were grand extinction events of five times since the birth of life on the earth. Modern extinction is very rapid and human activity is major causal factor. In these respects, it is distinguished from the past one. Climate change is real. Biodiversity is very vulnerable to climate change. If organisms did not find a survival method such as 'adaptation through evolution', 'movement to the other place where they can exist', and so on in the changed environment, they would extinct. In this respect, if climate change is continued, biodiversity should be damaged greatly. Furthermore, climate change would also influence on human life and socio-economic environment through change of biodiversity. Therefore, we need to grasp the effects that climate change influences on biodiversity more actively and further to prepare the alternatives to reduce the damage. Change of phenology, change of distribution range including vegetation shift, disharmony of interaction among organisms, reduction of reproduction and growth rates due to odd food chain, degradation of coral reef, and so on are emerged as the effects of climate change on biodiversity. Expansion of infectious disease, reduction of food production, change of cultivation range of crops, change of fishing ground and time, and so on appear as the effects on human. To solve climate change problem, first of all, we need to mitigate climate change by reducing discharge of warming gases. But even though we now stop discharge of warming gases, climate change is expected to be continued for the time being. In this respect, preparing adaptive strategy of climate change can be more realistic. Continuous monitoring to observe the effects of climate change on biodiversity and establishment of monitoring system have to be preceded over all others. Insurance of diverse ecological spaces where biodiversity can establish, assisted migration, and establishment of horizontal network from south to north and vertical one from lowland to upland ecological networks could be recommended as the alternatives to aid adaptation of biodiversity to the changing climate.

The Predictable Factors for the Mortality of Fatal Asthma with Acute Respiratory Failure (호흡부전을 동반한 중증천식환자의 사망 예측 인자)

  • Park, Joo-Hun;Moon, Hee-Bom;Na, Joo-Ock;Song, Hun-Ho;Lim, Chae-Man;Lee, Moo-Song;Shim, Tae-Sun;Lee,, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong;Koh, Youn-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.3
    • /
    • pp.356-364
    • /
    • 1999
  • Backgrounds: Previous reports have revealed a high morbidity and mortality in fatal asthma patients, especially those treated in the medical intensive care unit(MICU). But it has not been well known about the predictable factors for the mortality of fatal asthma(F A) with acute respiratory failure. In order to define the predictable factors for the mortality of FA at the admission to MICU, we analyzed the relationship between the clinical parameters and the prognosis of FA patients. Methods: A retrospective analysis of all medical records of 59 patients who had admitted for FA to MICU at a tertiary care MICU from January 1992 to March 1997 was performed. Results: Over all mortality rate was 32.2% and 43 patients were mechanically ventilated. In uni-variate analysis, the death group had significantly older age ($66.2{\pm}10.5$ vs. $51.0{\pm}18.8$ year), lower FVC($59.2{\pm}21.1$ vs. $77.6{\pm}23.3%$) and lower $FEV_1$($41.4{\pm}18.8$ vs. $61.l{\pm}23.30%$), and longer total ventilation time ($255.0{\pm}236.3$ vs. $98.1{\pm}120.4$ hour) (p<0.05) compared with the survival group (PFT: best value of recent 1 year). At MICU admission, there were no significant differences in vital signs, $PaCO_2$, $PaO_2/FiO_2$, and $AaDO_2$, in both groups. However, on the second day of MICU, the death group had significantly more rapid pulse rate ($121.6{\pm}22.3$ vs. $105.2{\pm}19.4$ rate/min), elevated $PaCO_2$ ($50.1{\pm}16.5$ vs. $41.8{\pm}12.2 mm Hg$), lower $PaO_2/FiO_2$, ($160.8{\pm}59.8$ vs. $256.6{\pm}78.3 mm Hg$), higher $AaDO_2$ ($181.5{\pm}79.7$ vs. $98.6{\pm}47.9 mm Hg$), and higher APACHE III score ($57.6{\pm}21.1$ vs. $20.3{\pm}13.2$) than survival group (p<0.05). The death group had more frequently associated with pneumonia and anoxic brain damage at admission, and had more frequently developed sepsis during disease progression than the survival group (p<0.05). Multi-variate analysis using APACHE III score and $PaO_2/FiO_2$, ratio on first and second day, age, sex, and pneumonia combined at admission revealed that APACHE III score (40) and $PaO_2/FiO_2$ ratio (<200) on second day were regarded as predictive factors for the mortality of fatal asthma (p<0.05). Conclusions: APACHE III score ($\geq$40) and $PaO_2/FiO_2$ ratio (<200) on the second day of MICU, which might reflect the response of treatment, rather than initially presented clinical parameters would be more important predictable factors of mortality in patients with FA.

  • PDF

Use of Noninvasive Mechanical Ventilation in Acute Hypercapnic versus Hypoxic Respiratory Failure (급성 환기부전과 산소화부전에서 비침습적 환기법의 비교)

  • Lee, Sung Soon;Lim, Chae-Man;Kim, Baek-Nam;Koh, Younsuck;Park, Pyung Hwan;Lee, Sang Do;Kim, Woo Sung;Kim, Dong Soon;Kim, Won Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.6
    • /
    • pp.987-996
    • /
    • 1996
  • Background : We prospectively evaluated the applicability and effect of noninvasive ventilation (NIV) in acute respiratory failure and tried to find out the parameters that could predict successful application of NIV. Methods : Twenty-six out of 106 patients with either acute ventilatory failure (VF: $PaCO_2$ > 43 mm Hg with pH < 7.35) or oxygenation failure (OF: $PaO_2/AO_2$ < 300 mm Hg with $pH{\geq}7.35$) requiring mechanical ventilation were managed by NIV (CPAP + pressure suppon, or BiPAP) with face mask. Eleven out of 19 cases with VF (57.9%) (M : F=7 : $55.4{\pm}14.6$ yrs) and 15 out of 87 cases with OF (17.2%) (M : F=12 : 3, $50.6{\pm}15.6$ yrs) were s uilable for NIY. Respiratory rates, arterial blood gases and success rate of NIV were analyzed in each group. Results: 81.8% (9/11) of YF and 40% (6/15) of OF were successfully managed on NIV and were weruled from mechanical ventilator without resorting to endotracheal intubation. Complications were noted in 2 cases (nasal skin necrosis 1, gaseous gastric distension 1). In NIV for ventilatory failure, the respiration rate was significantly decreased at 12 hour of NIV ($34{\pm}9$ /min pre-NIV, $26{\pm}6$ /min at 12 hour of NIV, p=0.045), while $PaCO_2$ ($87.3{\pm}20.6$ mm Hg pre-NIV, $81.2{\pm}9.1$ mm Hg at 24 hour of NIV) and pH ($7.26{\pm}0.04$, $7.32{\pm}0.02$, respectively, p <0.05) were both significantly decreased at 24 hour of NIV In NIV for oxygenation failure, $PaCO_2$ were not different between the successful and the failed cases at pre-NIV and till 12 hours after NIV. The $PaO_2/FIO_2$ ratio, however, significantly improved at 0.5 hour of NIV in successful cases and were maintained at around 200 mm Hg (n=6 : at baseline, 0.5h, 6h, 12h : $120.0{\pm}19.6$, $218.9{\pm}98.3$, $191.3{\pm}55.2$, $232.8{\pm}17.6$ mm Hg, respectively, p=0.0211), but it did not rise in the failed cases (n=9 : $127.9{\pm}63.0$, $116.8{\pm}24.4$, $100.6{\pm}34.6$, $129.8{\pm}50.3$ mm Hg, respectively, p=0.5319). Conclusion : From the above results we conclude that NIV is effective for hypercapnic respiratory failure and its success was heralded by reduction of respiration rale before the reduction in $PaCO_2$ level. In hypoxic respiratory failure, NIV is much less effective, and the immediate improvement of $PaO_2/FIO_2$ ratio at 0.5h after application is thought to be a predictor of successful NIV.

  • PDF