• Title/Summary/Keyword: 가스배출시설

Search Result 213, Processing Time 0.028 seconds

A Study on the Chlorobenzene and Chlorophenol Behavior in Plasma Type Pyrolysis/Gasfication/Melting Process (플라즈마 방식 열분해 가스화용융시설의 공정별 클로로벤젠 및 클로로페놀 배출거동에 관한 연구)

  • Shin, Chan-Ki;Shin, Dae-Yun;Kim, Ki-Heon;Son, Ji-Whan
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.2
    • /
    • pp.9-20
    • /
    • 2007
  • The incineration process has commonly used for wastes amount reduction and thermal treatments of pollutants as the technologies accumulated. However, the process is getting negative public images owing to matter of hazardous pollutants emission. Specially dioxins became a main issue and were mostly emitted from municipal solid wastes incineration. In this reason, pyrolysis/gasification/melting process is presented as an alternative of incineration process. The pyrolysis/gasification/melting process, a novel technology, is middle of verification of commercial plant and development of technologies in Korea. But the survey about the pollutant emission from the process, and background data in these facilities is necessary. So in this survey, t is investigated that the behavior of chlorobenzenes and chlorophenols in plasma type pyrolysis/gasification/melting plant of pilot scale. We investigated discharging behavior of each phase of chlorobenzene through each process in the plsasma type pyrolysis/gasification/melting process. From this result, it was found that about 99 percent of particle-phase chlorobenzene was removed, but on the other hand gas-phase chlorobenzene was increased by about 600 percent through heat exchanger, flue gas cooling, system and semi dry absorption bag filter(SDA/BF). Also, this investigation presented that di-chlorobenzene(DCB) tri-chlorobenzene(TCB), tetra-chlorobenzene(TeCB), penta-chlorobenzene (PCB), except mono-chlorobenzene(MCB) and hexa-chlorobenzene(HCB) were increased through the flue gas cooling system and the semi dry absorption bag filter(SDA/BF). It was investigated that concentration of particle-phase chlorophenol was decreased by about 66 percent, but on the other hand, concentration of gas-phase chlorophenol was increased by about 170 percent through heat exchanger, flue gas cooling system, and semi dry absorption bag filter(SDA/BF). Also, it was found that di-chlorophenol(DCP), tri-chlorophenol(TCP), and penta-chlorophenol(PCP) were increased through the flue gas cooling system, and the semi dry absorption bag filter(SDA/BF). It can be considered that small-scale pilot facility and short investigation period might cause the concentration increase through the flue gas cooling system and the semi dry absorption bag filter(SDA/BF). A further study on real-scale pilot facility and accurate investigation may be required.

A study on the Dioxin behavior in the process of representative pyrolysis/gasfication/melting plant (대표적인 열분해가스화 용융시설의 공정별 다이옥신 배출거동에 관한 연구)

  • Shin, Chan-Ki;Shin, Dae-Yun
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.1 s.63
    • /
    • pp.1-16
    • /
    • 2007
  • The incineration process has commonly used for wastes amount reduction and thermal treatments of pollutants as the technologies accumulated. However, the process is getting negative public images owing to matter of hazardous pollutants emission. Specially dioxins became a main issue and is mostly emitted from municipal solid wastes incineration. In this reason, pyrolysis/gasfication/melting process is presented as a alternative of incineration process. The pyrolysis/gasfication/melting process, a novel technology, is middle of verification of commercial plant and development of technologies in Korea. But the survey about the pollutant emission from the process, and background data in these facilities is necessary. So in this survey, it Is investigated that the behavior of dioxins in three pyrolysis/gasfication/melting plant (S, T, P) of pilot scale. In case of S plant, concentration of dioxins shows high at latter part of cogenerated boiler and stack which are operate on low temperature conditions than a latter parts of pyrolysis and melting furnace which are operate on high temperature condition. Concentration of gas phage dioxins had increased after combusted gas passed cogenerated boiler and this is attributed to react of precursor materials such as chlorobenzene and chlorophenol. Concentration of dioxins in T plant showed lower levels at latter part of cooling equipment which are operate with water spray type on low temperature conditions than a latter parts of gasfied melting furnace which are operate on high temperature condition. Removal efficiency of dioxins at gas treatment equipment was 78.8 %. Concentration of dioxins in P plant was low at latter part of SDA/BF which is operate at low temperature conditions than a latter parts of pyrolysis gasfied chamber which are operate at high temperature condition. Removal efficiency of dioxins of SDA/BF was 85.9 % and therefore, it showed high efficiency at those of stoker type incineration facility. However, concentration of dioxins which emitted at high temperature condition were low in three facilities and satisfied present standard emission level of dioxins. To consider the distribution ratio of dioxins, Particulate phase dioxins at S and P plants showed similar ratio with which shows in current stoker type for middle scale domestic waste incineration facility. It is necessary to continuos monitoring the ratio of distribution of dioxins in T plant in because ratio of gas phage dioxins showed high.

Effects of Ozone Treatment to Pig Liquid Manure on Reduction of Odorous Gases (돈분뇨 액비의 악취저감을 위한 오존처리 효과)

  • Jeong, J.W.;Yoo, Y.H.;Park, K.H.;Kam, D.H.;Choi, H.J.;Kim, T.I.;Cho, Y.S.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.161-170
    • /
    • 2007
  • Ozone from a pilot-scale ozone generator was treated on fermented pig liquid manure stored in a storage tank in order to reduce odor substances during the process of fermented liquid manure production. The group of ozone treatment showed one less than the organic matter compared that of the control. The preferable condition for characteristic changes was when the ratio of BOD to COD was less than 1.5. Ozone treatment showed better oxidizing power than control as it removed more suspended solids and had less methyl isobutyl ketone(P<0.05). Odor reduction measured by olfactory method was higher in ozone treatment than in control.

  • PDF

Flow Characteristics and Wind Loads on the Solar Panel and Floating System of Floating Solar Generato (부유식 태양광 발전기의 패널과 부유체에 작용하는 풍하중과 유동특성)

  • Ryu, Dae-Gyeom;Lee, Kye-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.229-235
    • /
    • 2019
  • A floating photovoltaic generation system is a new concept that combines existing photovoltaic generation technology with floating technology. This is installed in the water not on conventional land and a building. The system is designed as a unit module type that can be connected to other modules according to the power generation capacity, thereby forming a large-scale power generation facility. As a renewable energy source, it is composed of a floating structure, mooring device, photovoltaic power generation facility, and underwater cable. Because this system is installed outdoors, the effect of the wind load on the structure is very large. In this study, the wind loads most affected on the floating photovoltaic generation structure were obtained by computational fluid dynamic analysis. The flow characteristics and wind loads were analyzed for a range of wind orientations and angles of inclination. The analysis showed the position and magnitude of the maximum wind load to the wind direction and the flow characteristics around the solar panel and floating system. The wind load increased with increasing angle of inclination of the panel to the ground.

CFD Analysis on the Internal Reaction in the SNCR System (SNCR 시스템 내부의 물질 반응에 관한 전산해석적 연구)

  • Koo, Seongmo;Yoo, Kyung-Seun;Chang, Hyuksang
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.63-73
    • /
    • 2019
  • Numerical analysis was done to evaluate the chemical reaction and the reduction rate inside of selective non-catalytic reduction to denitrification in combustion process. The $NO_X$ reduction in selective non-catalytic reduction is converted to not only nitrogen but also nitrous oxide. Simultaneous $NO_X$ reduction and nitrous oxide generation suppressing is required in selective non-catalytic reduction because nitrous oxide influences the global warming as a greenhouse gas. The current study was performed compare the computational analysis in the same temperature and amount of NaOH, and in comparison with the previous research experiments and confirmed the reliability of the computational fluid dynamics. Additionally, controlling the addition amount of NaOH to predict the $NO_X$ reduction efficiency and nitrous oxide production. Numerical analysis was done to check the mass fraction of each material in the measurement point at the end of selective non-catalytic reduction. Experimental Value and simulation value by numerical analysis showed an error of up to 18.9% was confirmed that a generally well predicted. and it was confirmed that the widened temperature range of more than 70% $NO_X$ removal rate is increased when the addition amount of NaOH. So, large and frequent changes of the reaction temperature waste incineration facilities are expected to be effective.

Estimation of Pollutant Sources in Dangjin Coal-Fired Power Plant Using Carbon Isotopes (탄소 안정동위원소를 이용한 석탄화력발전소 인근 오염원 기원 추정 : 당진시를 중심으로)

  • Yoon, Soohyang;Cho, Bong-Yeon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.567-575
    • /
    • 2021
  • Residents in Dangjin, South Chungcheong Province, in which large-scale emissions facilities such as coal-fired power plants and steel mills are concentrated, are very much concerned about their health despite the local government's aggressive efforts to improve air quality and reduce greenhouse gases. To understand the impact of coal-fired power plants and external factors on local air pollution, the origins of local pollutants were investigated using stable carbon isotopes that are generally used as tracers of the provenance of fine or ultrafine dust. The origins of the pollutants were analyzed with the data library, built using the seasonally measured data for the two separate locations selected considering the distance from the coal-fired power plant and the analysis of previous studies, and with the back trajectory analysis. As a result of analyzing stable isotope ratios, the tendency of high concentration was found in the order of winter > spring > fall > summer. According to the data matching with the library, the mobile pollutants and open-air incineration had a relatively higher impact on the local air pollution. It is believed that this study, as a pilot study, should focus on securing the reliability of the study results through continuous monitoring and data accumulation.

Very Short- and Long-Term Prediction Method for Solar Power (초 장단기 통합 태양광 발전량 예측 기법)

  • Mun Seop Yun;Se Ryung Lim;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1143-1150
    • /
    • 2023
  • The global climate crisis and the implementation of low-carbon policies have led to a growing interest in renewable energy and a growing number of related industries. Among them, solar power is attracting attention as a representative eco-friendly energy that does not deplete and does not emit pollutants or greenhouse gases. As a result, the supplement of solar power facility is increasing all over the world. However, solar power is easily affected by the environment such as geography and weather, so accurate solar power forecast is important for stable operation and efficient management. However, it is very hard to predict the exact amount of solar power using statistical methods. In addition, the conventional prediction methods have focused on only short- or long-term prediction, which causes to take long time to obtain various prediction models with different prediction horizons. Therefore, this study utilizes a many-to-many structure of a recurrent neural network (RNN) to integrate short-term and long-term predictions of solar power generation. We compare various RNN-based very short- and long-term prediction methods for solar power in terms of MSE and R2 values.

Comparison of Greenhouse Gas Emission from Liquid Swine Manure According to Aeration Levels in Summer (돈분뇨 액비의 폭기수준에 따른 여름철 온실가스 배출량 비교)

  • Choi, Dong-Yoon;Park, Kyu-Hyun;Cho, Sung-Back;Yang, Seong-Hak;Hwang, Ok-Hwa;Kwag, Jung-Hoon;Ahn, Hee-Kwon;Yoo, Yong-Hee
    • Journal of Animal Environmental Science
    • /
    • v.17 no.3
    • /
    • pp.163-170
    • /
    • 2011
  • This study was carried out to investigate greenhouse gas (GHG), $CH_4$ and $N_2O$, emission from liquid swine manure according to aeration levels in summer. To evaluate the influence of operation methods on GHG emissions, liquid swine manure were applied with different rates of aeration (store without aeration, $1m^3/ton/h$, $2.5m^3/ton/h$, and $5m^3/ton/h$). Following are the results of this study. The liquid swine manure applied no aeration, $1m^3/ton/h$, $2.5m^3/ton/h$, and $5m^3/ton/h$ aeration rates released 315.6, 13.9, 17.9 and $9.6{\mu}g/m^2/s$ of $CH_4$ and 0.173, 0.157, 0.131, and $0.241{\mu}g/m^2/s$ of $N_2O$, respectively. Liquid swine manure applied no aeration released the most amount of GHG ($6,681.4{\mu}g/m^2/s$ $CO_2$-Eq.) and followed by $5m^3/ton/h$ ($276.4{\mu}g/m^2/s$ $CO_2$-Eq.), $2.5m^3/ton/h$ ($416.0{\mu}g/m^2/s$ $CO_2$-Eq.), and $1m^3/ton/h$ ($340.8{\mu}g/m^2/s$ $CO_2$-Eq.). Our results reveal that the aerated system may reduce GHG emissions compared to no aeration. Consequently, aeration and mixing were effective at reducing GHG emissions during liquid swine manure storage.

Assessment of CO2 Fertilization Captured in Thermoelectric Power Plant on Leafy Vegetables Grown in Greenhouse (화력발전소 포집 CO2를 이용한 시설 엽채류 시비효과 평가)

  • Jeong, Hyeon Woo;Hwang, Hee Sung;Park, Jeong;Yoon, Seong Ju;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.423-431
    • /
    • 2022
  • Due to increase of interest in 'carbon neutrality', attempts at agricultural use of CO2 are increasing. In this study, we used the dry-ice made by CO2 as by-product in thermoelectric power plant on CO2 fertilization for production of leafy vegetable in greenhouses. The dry-ice was supplied on three leafy vegetable farms (Allium tuberosum Rottl. ex Spreng, Aster scaber, and Oenanthe stolonifera DC.) located in Hadong, Gyeongsangnamdo. Two greenhouses were used in each leaf vegetable crops, one greenhouse used as the control (non-treatment), other greenhouse used as supplied CO2. For CO2 fertilization, a gas sublimated from dry ice was supplied to the greenhouse using a specially designed prototype supply machine. A. tuberosum greenhouse has no difference of CO2 concentration between the control, and CO2 fertilization and shown high CO2 concentration both greenhouses. However, the CO2 concentrations in A. scaber and O. stolonifera greenhouses were increased in CO2 fertilization treatment. The growth of A. scaber and O. stolonifera were increased in CO2 fertilization, and the yield also increased to 36% and 25% than the control, respectively. As a result of economic analysis, the A. scaber has increase of income rate, however A. tuberosum and O. stolonifera has decreased income rate. Thus, the use of the dry-ice made by CO2 as by-product in thermoelectric power plant has possibility to increase productivity of the leafy vegetable in greenhouse and have agricultural use value.

Evaluation on Cooling Effects of Geothermal Heat Pump System in Farrowing House (지열 냉방시스템을 이용한 분만돈사의 냉방효과 분석)

  • Choi, H.C.;Song, J.I.;Na, J.C.;Kim, M.J.;Bang, H.T.;Kang, H.G.;Park, S.B.;Chae, H.S.;Suh, O.S.;Yoo, Y.S.;Kim, T.W.;Park, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.2
    • /
    • pp.99-108
    • /
    • 2010
  • The principal objective of this study was to investigate the cooling effects of geothermal heat pump system (GHPS) in farrowing house. A total of 96 sows were allocated to 2 pig housings (GHPS and conventional housing) with 48 for four weeks in summer season. During the experimental period of four weeks, the highest outside temperature observed was approximately $34.1^{\circ}C$, GHPS decrease indoor temperature of pig housing up to $30.9^{\circ}C$, but conventional pig housing was similar to outside temperature. Dust concentrations (maximum 61.4%) of particulate matter less than $10{\mu}m$ (PM 10) in GHPS-housing were lower than the conventional housing. GHPS showed no signigicant difference in carbon dioxide emission, whereas the ammonia gas concentration was significantly decreased in GHPS-housing compared to that of conventional housing. Sows in GHPS-housing showed significantly lower respiratory rate than those of the control group. GHPS did not affect hormone level, litter size and birth weight, but weaning weight of piglets was influenced by GHPS. Feed consumption of sows was significantly increased in GHPS-housing compared to the conventional hosing. These results suggest that GHPS decrease dust concentration, ammonia gas emission and indoor temperature of pig housing and may affect performance in sows and weaned piglets.