• Title/Summary/Keyword: 가스발생기(gas generator)

Search Result 253, Processing Time 0.02 seconds

A Numerical Study of Supersonic Combustion of Gas Generator (Gas generator의 초음속 연소현상에 대한 연구)

  • Kim, Seong-Jin;Seo, Bong-Gyun;Yeom, Hyo-Won;Sung, Hong-Gye;Gil, Hyun-Yong;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.419-422
    • /
    • 2010
  • An unsteady numerical combustion analysis was performed to investigate the combustion characteristics of A Dual Combustion Ramjet(DCR) engine using a gas generator. According to a variance of the equivalence ratio of the gas generator, the flow pattern in the combustor was analyzed. A typical acoustic frequency in the combustor was observed by detail analysis of pressure fluctuation at each location of the combustor.

  • PDF

Modeling and Simulation of O2/CH4 Gas Supply System of Afterburner for Fuel-rich Gas of Gas Generator (가스발생기의 연료과잉가스 후연소용 O2/CH4 가스 공급시스템 설계)

  • Wang, Seungwon;Lee, Kwangjin;Chung, Yonggahp;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.86-92
    • /
    • 2014
  • Combustion Chamber Test Facility (CCTF) to be constructed in Naro Space Center for re-burning the fuel-rich gas of gas generator have afterburner system. The afterburner system is supplied the Oxygon ($O_2$) gas and Methane ($CH_4$) gas to reduced the harmful exhaust gas. The detailed design for the planned CCTF afterburner system is simulated and analysed by AMESim program through the all of gas supply system components. Afterburner system is performed to verify the pipe size, orifice diameter, and gas supply conditions according to the total gas consumption from analysis of gas supply system.

Experimental Study on the Suppression of low Frequency Unstable Burning Occurred in a Gas Generator Using Bundle Cylindrical Grain (다발 원통형 그레인을 사용한 가스발생기의 저주파 연소불안정 소멸에 대한 실험적 연구)

  • Sung Hong-Gye;Byun Jong-Ryul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.10-16
    • /
    • 2004
  • Untypical unstable burning with very low frequency was observed at firing test of a gas generator using bundle cylindrical grain. The pressure unbalance between inside and outside of cylindrical grain brought such a low unstable burning. The grains were radially holed so that the high pressure gas inside of grain could quickly moved outward of gain, resulting dissipation of the pressure unbalance However too many holes were required to let the burning be stable for all operation regime from low to high temperature of grain and resultantly deteriorate the Progressive increase of gas amount produced by a gas generator. So another idea using grids located both sides of a bundle grain was applied to dissipate actively large vorticities enhanced by unbalance pressure distribution in a combustor. Finally stable burning with progressively increase of gas was established by application of 5${\times}$5 grid slightly away bundle grain to move bundle gain freely in case pressure unbalance were occurred inside of combustor.

Numerical Analysis on the Startup of a Rocket Engine (로켓 엔진의 시동에 관한 해석적 연구)

  • Park, Soon-Young;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.60-71
    • /
    • 2007
  • The startup characteristic of liquid propellant rocket engine should be focused on the stable ignition of combustion chamber and gas generator. Also, to lessen the propellants consumption during this period which doesn't contribute to the flight thrust, the engine has to be transferred to the nominal mode quickly. Because of the risk of test, it is impossible to develop all the startup cyclogram or the specifications of engine by test, so the precedent numerical approach is quite necessary. In this study we developed a mathematical model for the startup phenomena in a liquid rocket engine driven by gas generator-turbopump system based on the commercial 1-D flow system analysis program, Flowmaster. Using this program we proposed a methodology to obtain the specifications of turbine starter and the opening time of shutoff valves for the stable startup of the engine. To verify this methodology we qualitatively compared the analysis results to the typical startup curve of the published engine, then found it is quite well matched.

Estimation of the operating characteristics of a turbopump driven by a pyro-starter (파이로시동기로 작동되는 터보펌프의 구동특성 예측)

  • Kim Cheul-Woong;Seol Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.167-170
    • /
    • 2006
  • For a short time a pyre-starter should turn the blades of a turbine to the adequate rotational speed by a single operation. Through this process the pressures of the components of a propellant rise rapidly up to the operating point, and the components enter into a gas-generator. Combustion in the gas-generator occurs to keep the turbopumps working. In this research characteristic parameters of a pyre-starter which correspond to the required performance of the turbopump before the gas-generator starts to work were selected

  • PDF

Experimental Study on the Internal Flow Characteristics in a Swirl Coaxial Injector for Gas Generator (가스발생기용 스월 동축형 인젝터에서 내부 유동의 특성에 대한 실험적 연구)

  • Kim, Sung-Hyuk;Yoon, Jung-Soo;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.29-33
    • /
    • 2010
  • This study aim to investigate the internal flow characteristics by recess length of swirl coaxial injector for gas generator has propellant of Kerosene-LOx. Recess length is a very important element, have influence in spray stability and LOx post damage. The influence of recess length was analyzed by visualizing internal flow and measuring liquid film thickness and manifold pressures. Also, each spray characteristic by recess length was investigated in internal or external injector.

  • PDF

Hydrogen Peroxide Gas Generator with Dual Catalytic Bed for Non-preheating Start-up (비예열 시동특성을 갖는 이원 촉매 베드 과산화수소 가스발생기)

  • Lim, Ha-Young;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.163-167
    • /
    • 2007
  • Silver is widely used for catalytic decomposition of hydrogen peroxide, but start-up at room temperature is difficult and cannot withstand at high temperature. In this paper, to overcome these short-comings, a dual catalytic bed which consists of a vaporizer catalyst and a high temperature catalyst was studied. Platinum was selected as the vaporizer catalyst and perovskite type catalyst was selected for the high temperature catalyst. Preliminary test demonstrated start-up capability with non-preheating at room temperature and good thermal stability at high temperature.

  • PDF

A Study on the Possibility of Application as a Natural Extinguishing System for $N_2$ Generator (산업용 질소발생기에 대한 청정소화설비로의 적용가능성에 관한 연구)

  • Suh, Byung-Taek;Jang, Young-Keun
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.139-144
    • /
    • 2010
  • An experimental study has been carried out to investigate the possibilities of an industrial $N_2$ generator that it replace Halon series as a natural extinguishing system. And this study comparison design standard of gas series extinguishing system with natural extinguishing system. We manufactured simple protected enclosure for analyzing fire-extinguishing performance of the $N_2$ generator. As a $N_2$ gas is exhausted on protected enclosure, a various of Oxygen concentration is measured to analyze fireextinguishing performance experimentally. The results, in case of $100m^3$ protected enclosure and $5m^3$/min $N_2$ flow rate, the Oxygen concentration is decreased below 15% within 3 minutes. And so, the $N_2$ generator make full use of an suffocating extinguishing system.

Development and Performance Analysis of Gas Generator with Plunger-type Flow Control Valve for Ducted Rocket : Part II (Plunger 타입 유량조절장치를 적용한 덕티드 로켓용 가스발생기 개발 및 성능분석 : Part II)

  • Han, Seongjoo;Lee, Jungpyo;Cho, Sungbong;Khil, Taeock;Kim, Minkyum
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.87-92
    • /
    • 2021
  • In this study, a numerical approach was utilized to observe the phenomena in the ground combustion test of a gas generator for a ducted rocket with a plunger-type flow control device. The design factors were also identified through the analysis. It was observed that the pressure increase without the adhesion of the combustion product at the discharge pipe was quite similar to the analysis assuming a cone-shaped erosive burning effect. The pressure increase in most cases was similar to the analysis results when assuming the change in discharge pipe area due to the adhesion of combustion products. Moreover, it was also established that for a given grain shape and discharge flow area, the effect of the adhesion of combustion products has a significant effect on the combustion chamber pressure for cases over n=0.45.

Combustion Characteristics of Gas Generator for Liquid Rocket Engine (액체로켓엔진 가스발생기 연소특성)

  • Kim, Seung-Han;Han, Yeoung-Min;Moon, Il-Yoon;Lee, Kwang-Jin;Seol, Woo-Seok;Lee, Chang-Jin;Kim, Seung-Han
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.213-216
    • /
    • 2004
  • The results of combustion performance test of fuel-rich gas generator(GG) using LOx and kerosene as propellant at design and off-design point are described. The parameters used in this analysis are the average exit temperature($T_{GG}$) and the characteristic velocity($C^{\ast}$). The average gas temperature at the exit of gas generator is found to be a function of propellant O/F ratio. For the gas generator having residence time of 4msec or more, the effect of flame residence time and combustion chamber pressure on the exit temperature is not significant. The exit characteristic velocity is found to be linearly proportional to the gas temperature at the exit of gas generator.

  • PDF