• Title/Summary/Keyword: 가스맥동

Search Result 29, Processing Time 0.024 seconds

CFD and Experimental Study of Gas Flow inside the Wounding Steel Pipe Fitted in Reciprocating Hydrogen Compressor (왕복동식 수소 압축기의 강관 관로 내부 가스흐름의 CFD와 실험)

  • Chung, H.S.;Rahman, M. Sq.;Lee, G.H.;Woo, J.S.;Kim, B.H.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2010
  • 전 세계적으로 급속도로 인기가 더해가고 있는 수소에너지는 높은 전환 효율성, 재생성, 친환경적인 특징을 가지며 미래의 주 에너지가 될 것이다. 왕복동식 압축기를 통과한 후의 수소 가스의 압력은 높은 맥동압을 가진다. 스너버는 압축기의 한 구성품으로 맥동압을 낮추고 수소가스의 불순물을 제거하기 위해 사용된다. 이 연구에서의 실험은 스너버 시스템에 사용된 강관의 맥동에 관해 조사하기 위해서 수행되었다. 맥동압은 12 Hz ~ 60 Hz의 모터속도에서 RMS값을 기준으로 0.1625% ~ 0.5305% 그리고 평균압력을 기준으로 0.1621% ~ 0.5277% 감소하였다. 압력손실은 RMS값을 기준으로 0.1092% ~ 1.4419%, 평균압력을 기준으로 0.1493% ~ 1.7507%로 측정되었다. CFD를 이용한 수치해석값은 실험값이 거의 비슷한 결과를 나타내고 강관 관로 내부 가스의 자세한 압력을 설명하기 위한 중요한 역할을 수행한다.

CFD Analysis and Optimization Dimension on the Snubber with buffer of Reciprocating Hydrogen Compressor (왕복동식 수소압축기에서 버퍼가 있는 스너버의 수치해석 검증과 최적의 크기 도출)

  • Lee, G.H.;Akbar, W.A.;Shim, K.J.;Jeong, H.Min;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.20-27
    • /
    • 2008
  • 수소 추출과 리포밍 과정, 연료 전지, 저장소로 구성된 수소 연료에 대한 연구는 세계적으로 번영하고 있는 중이다. 그러나 한국의 수소 스테이션에 대한 연구는 아직도 개발이 미미한 수준이다. 그리고 역시 수소 스테이션의 가장 중요한 부분인 수소 압축기에 대한 연구도 미흡하다. 수소압축기에서 가장 중요한 부분 중에 하나는 스너버인데 이것의 기능은 수소가스의 맥동압을 줄이고 불순물을 제거한다. 스너버 내부에는 버퍼라고 불리는 기울어진 판이 설치되어 맥동압을 줄이고 불순물을 제거하는 역할을 담당한다. 스너버 내부의 압력 손실과 맥동압이 최소가 될 때 스너버는 적절한 성능을 가졌다고 평가된다. 그러므로 이 연구의 목적은 수치해석을 통하여 스너버의 최적의 기하학적 크기와 버퍼의 각도에 따른 최적의 스너버를 찾는 것이다. 수치해석의 결과에서 다양한 버퍼각도에 따른 스너버의 독특한 특성을 볼 수 있다. 결과적으로 버퍼의 각도가 $35^{\circ}$일때 최소의 압력손실율이 발생했고, 버퍼의 각도가 $10^{\circ}$일 때 최소의 맥동압이 발생하였다.

  • PDF

Gas pulsation analysis of large reciprocating compressor in parallel operation (병렬 운전되는 대형 왕복동 압축기의 가스맥동 분석)

  • Kim, Seong-Jun;Kim, Hyun-Cheol;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.910-915
    • /
    • 2009
  • For large reciprocating compressors in parallel operation, an analytical study has been carried out on the gas pulsation in associated discharge piping lines. Since the pressure pulsation at a valve, valve dynamics, and the gas flow rate through the valve are interrelated, affecting one another, these need to be solved simultaneously. Acoustic transfer matrix method, which relates acoustic pressure and velocity at one location to those at another location, has been adopted to calculate the effect of the gas flow at one valve location on the gas pulsation at other valve locations.

  • PDF

Gas Pulsation Analysis of Large Reciprocating Compressors in Parallel Operation (병렬 운전되는 대형 왕복동 압축기의 가스맥동 분석)

  • Kim, Seong-Jun;Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • For large reciprocating compressors in parallel operation, an analytical study has been carried out on the gas pulsation in associated discharge piping lines. Since the pressure pulsation at a valve, valve dynamics, and the gas flow rate through the valve are interrelated, affecting one another, these need to be solved simultaneously. Acoustic transfer matrix method, which relates acoustic pressure and velocity at one location to those at another location, has been adopted to calculate the effect of the gas flow at one valve location on the gas pulsation at other valve locations.

A Study on the Gas Pulsation in a Rotary Compressor (로타리 압축기의 가스맥동에 관한 연구)

  • 김현진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.648-655
    • /
    • 2002
  • For a discharge system of rotary compressor, analytical investigation on the discharge gas pulsation has been carried out. With the aid of four pole theory, acoustic impedance of the discharge system composed of muffler and cavities on both sides of motor with gas passages between them can be calculated using discrete acoustic elements described by transfer matrices, yielding the relationship between discharge mass flow rate and gas pulsation at the discharge port. This method of predicting the gas pulsation was validated by measurement data. Effects of change in discharge muffler geometries on the gas pulsation also were investigated, demonstrating that this method can be used for muffler design.

Unsteady Ignition in the Pulse Combustor with Counter Jet Flows (대향분출류가 있는 맥동연소기의 비정상 점화현상)

  • 이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.64-72
    • /
    • 1997
  • An analytical study has been performed to investigate the unsteady ignition characteristics of pulse combustion. In many combustion applications, strain rate of the flow can significantly affect the combustion features; ignition, extinction, and reignition. In the pulse combustion, two jets (hot combustion gases and fresh mixtures) coming from the opposite side of the combustor will collide in the combustor forming a stagnation region where the chemical reaction is suppressed by the strain rate until this becomes below the critical value. In this research, the method of large activation energy asymptotic is adopted with one step irreversible kinetics to examine the ignition response to the periodic variation of the strain rate of flow. The results show the variation of the maximum value of strain rate can determine whether the ignition or extinction occur.

  • PDF

A Study on The Pulsating Combustion of Premixed Gas in a Tube with a Honeycomb (다공성 물질에 의한 예혼합기의 맥동연소에 관한 연구)

  • 권영필;이동훈;현길학
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.676-684
    • /
    • 1990
  • This study is on the pulsating combustion of premixed gas in a Rijke type combustor made of a honeycomb flame holder in a tube. Modelling for the onset condition of the oscillation is made by the ratio of the acoustic power generation based on the analysis of heat transfer to the power loss due to the thermoviscous dissipation and radiation. Experiment is performed for the characteristics of acoustic, thermal and combustion. It is shown that the theoretical modelling for the oscillation may be used as a limit condition. And the combustion analysis for the acoustic power generation is needed for better prediction of the onset condition. Experimental result shows that, by pulsation, the flame length is shortened and the flame temperature is decreased with increase in the heat transfer coefficient. The NO$_{x}$ concentration in the exhaust gas is significantly reduced by pulsation and the concentration of unburned hydrocarbon shows a little increase.e.

Effects of gas pulsation in the suction line of a hermetic reciprocating compressor on th compressor performance (밀폐형 왕복동 압축기에서 흡입라인 가스맥동이 압축기 성능에 미치는 영향)

  • Lee, Yong-Ho;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.404-409
    • /
    • 2007
  • For a hermetic reciprocating compressor, it has been known that the gas pulsation in the suction line affects the compressor performance, and suction muffler design has been focused on both of noise reduction and minimum pressure drop across the muffler. Some studies have been carried out on the mutual interaction between the gas pulsation and the cylinder pressure to investigate some supercharging effects, but their efforts were limited on rather simple geometries. In this paper, interaction of the gas pulsation in the compressor suction line with cylinder pressure via suction valve motion has been calculated; for the gas pulsation analysis, modeling of Helmholtz resonators in series was used, and for cylinder pressure calculation, energy equations was set up for the gas inside the cylinder. For demonstration of this calculation method, four different types of suction line configurations for a hermetic reciprocating compressor were compared in terms of compressor performance and gas pulsation level.

  • PDF

Effects of Gas Pulsation in Piping Lines on Compressor Performance in a Double-Acting Reciprocating Compressor (복동식 왕복동 압축기의 연결 배관계 가스 맥동이 압축기 성능에 미치는 영향)

  • 김현진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.448-456
    • /
    • 2000
  • For piping line systems associated with a double-acting reciprocating compressor, an analytical study has been made on the gas pulsation in piping lines and its effects on the compressor performance. The transfer matrix which relates mass flow rate to the gas pulsation downstream of the compressor valve can be obtained by an acoustic model for piping line systems which include snubber and after-cooler with the aid of four pole theory Since mass flow rate is affected by the pressure pulsation in the pressure plenum, while the latter being determined by the former, iteration in the calculation should be made for convergence. The gas pulsation in pipings is found to have an adverse effect on the compressor's performance, and the magnitude of the gas pulsation can be lowered by increasing snubber volume.

  • PDF

A Study on the Gas Pulsation in a Horizontal Scroll Compressor (횡형 스크롤 압축기의 가스 맥동에 관한 연구)

  • Choi, Jin Sub;Kim, Hyun Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.37-42
    • /
    • 2000
  • Analytical and experimental investigations have been carried out on the gas pulsations in the discharge paths of a high-side horizontal scroll compressor, where the gas discharged from compression chamber is made to pass through several chambers inside the compressor shell. Model of Helmholtz resonators in series has been applied to this configuration to predict gas pulsation phenomena along the passages, and the calculation results have been compared with measured pressure time traces. Good agreements between the analytical and experimental results have been obtained. It has also been found that the compressor performance is somewhat affected by the size of individual chambers inside the compressor shell.

  • PDF