• Title/Summary/Keyword: 가스/입자 분배

Search Result 6, Processing Time 0.024 seconds

Gas/particle Partitioning of PAHs Segregated with Particle Size in Equilibrium States (대기 중 PAHs의 입경별 가스/입자 분배평형에 관한 연구)

  • Park, Jin-Soo;Lee, Dong-Soo;Kim, Jong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1270-1276
    • /
    • 2005
  • When gas/particle partitioning of PAHs in the atmosphere approached an equilibrium state, the slope of linear regression between gas/particle partitioning coefficient($logK_p$) and subcooled liquid vapour pressure($logP_L^O$) was -1. But it was alleged that the slope of equilibrium state might not be -1 in real atmospheric environment due to heterogeneous characteristics of particulate matter. In This study, it would be found if gas/particle partitioning of PAHs segregated with particle size in equilibrium state was based on the hypothesis mentioned above. We have calculated the slopes of $logK_p$ v.s. $logP_L^O$ after collecting 10 set samples which consisted of particulate and vaporous phases. The slope was close to -1 in equilibrium states. But despite of equilibrium state, all slopes segregated with particle size were not close to -1 and those were gentler with larger particle size. The difference of slopes in equilibrium states was almost against the assumption of gas/particle partitioning theory. When the gas/particle partitioning was due to adsorption, the desorption enthalpy was different in each particle size. When it was absorption, the activity coefficient was different. The difference of desorption enthalpy and activity coefficient in each particle size indicate the heterogeneous characteristics of the bulk particle. This may be the reason for slope variation with particle size even though in an equilibrium state.

Two phase analysis of solid rocket motor plume as particle characteristics (입자 특성에 따른 고체모터 플룸 이상유동 해석)

  • Kim, Seong-Lyong;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • KSLV-I KM plume including alumina particle has been studied using the continuum solver. Alumina particles are assumed to have 7 different diameters, and the specific ratio of the plume gas is assumed to be 1.2, with which the internal nozzle flow characteristics are similar to those of the chemically equilibrium analysis results. The results showed that the expansion angle of the particles is smaller than that of the gas phase, and that the big sized alumina particles are gathered in the plume core and the expansion angles of the big sized particles are smaller than those of the light particles. When the emissivity of the particles are assumed to be 0.1, the radiative heat flux is equivalent to those measured during the flight test of KSLV-I.

Gas-particle Partitioning of Organochlorine Pesticides in Atmosphere (대기 중 유기염소계 살충제의 가스-입자 분배)

  • Choi, Min-Kyu;Chun, Man-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.457-465
    • /
    • 2007
  • This study was performed to estimate the gas-particle partitioning of organochlorine pesticides (OCPs) in atmosphere, the samples were collected by PUF high volume air sampler for two years from June, 2000 to June, 2002. The gas phase fraction of ${\alpha/\gamma}-HCH$, heptachlor epoxide, ${\alpha/\gamma}-chlordane$ and trans-nonachlor was over 90%. But the gas phase fraction of ${\beta}-HCH$, p,p'-DDE, endosulfan sulfate, p,p'-DDD and p,p'-DDT was range of 20% through 80%, which means the gas phase fraction of OCPs components described above is sensitive to temperature. The correlation between the gas phase fraction and molecular weight of each OCPs component was not found in this research. The slope of regression line between gas-particle partitioning coefficient(${\log}K_p$) and subcooled liquid vapor(${\log}{P^o}_L$), gal-particle partitioning coefficient(${\log}K_p$) and octanol-air partitioning coefficient(${\log}K_{oa}$) which show -0.54 and 0.43 was not steep. So the equilibrium state between gas and particle was not reached and in this state the particulate fraction was low.

Gas-Particle Partitioning of PCBs in Ambient Air, Yokohama Japan (일본 요코하마 대기 중 PCBs의 가스-입자 분배)

  • Kim Kyoung-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.285-293
    • /
    • 2005
  • This study was aimed at estimation of gas-particle partitioning of polychlorinated biphenyls (PCBs) in ambient air. The samples were collected at urban site in Japan from March 2002 to January 2003. The concentration of total PCBs (from 4 CB to 10 CB) and TEQ (Toxic equivalent) ranged from 62 to $247\;pg/m^3$ and from 2 to $14\;fgTEQ/m^3 $, respectively. The average contribution $(\%)$ of gas phase to total PCBs concentration was above $80\%$, which suggests that in the atmosphere PCBs predominantly existed in the gas phase. The weak correlations between total PCBs concentration and temperature was found. However this result was due to a typhoon during summer and raining during sampling period. The gas-particle partition coefficient (Kp) was obtained as a function of temperature. The partition ratio of gaseous and particulate phase PCBs can be estimated for an arbitrary temperature. The plot of gas/particle partition coefficient (log Kp) vs. sub-cooled liquid vapor pressure $(log\;P_L)$ had reasonable correlations for individual samples but the slope varied among the samples (coefficients of determination for log Kp versus log $P_L$ plot were> 0.76 $(p<0.0001)$, except for 3 samples). As a result, the variations in the slope among the sampling period may be due to change of temperature, raining during sampling period and wind in this study.

Annual Variation and Gas/Particie Partitioning of PCDD/DFs of Ambient Air at Busan, Korea (부산의 대기 중 PCDD/DFs의 연간 변화와 가스/입자상 분배)

  • Ok, Gon;Park, No-Jin;Hwang, Sung-Min;Lee, Seok-Hyung;Kim, Jee-Hoon;Kim, Sung-Yong
    • Journal of Environmental Science International
    • /
    • v.19 no.4
    • /
    • pp.447-457
    • /
    • 2010
  • This study aims to monitor the variation of concentration of PCDD/DFs between the gaseous phase-particulate phases in the ambient air of urban area in Korea. This monitoring is evaluated by using the Junge-Pankow model and the Koa absorption model with the application of the Octanol-air partition coefficient. In this study, the ambient air samples were analyzed according to each congener group of the PCDD/DFs by HRGC/HRMS, which have been investigated for the past 5 years. In the results, the annual variation in the concentration level of $\Sigma$PCDD/DFs in TSP was increased from $1588\;fg/m^3$ in 1998 to $5123\;fg/m^3$ in 2002, and from 31 fg I-TEQ/$m^3$ to 94 fg I-TEQ/$m^3$ in the $\Sigma$I-TEQ. In the case of PUF of gaseous phase sample, their variation was increased from $1615\;fg/m^3$ in 1998 to $2237\;fg/m^3$ in 2002, and in the $\Sigma$I-TEQ from 12 fg I-TEQ/$m^3$ to 17 fg I-TEQ/$m^3$. The relative coefficient between the gas phase concentration of PCDD/DFs and the temperature was a value of 0.744; the contributive rate of the temperature to the gaseous phase concentration was 0.554. According to the results, the pattern of the coefficient of distribution based on log $p_L^0$ is similar to the ambient air of the urban areas.