• Title/Summary/Keyword: 가수분해

Search Result 2,481, Processing Time 0.032 seconds

대두단백질 가수분해물의 쓴맛 펩타이드 구조와 특징

  • Lee, Cheol-Ho
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2001.06a
    • /
    • pp.3-41
    • /
    • 2001
  • 단백질의 부분 가수분해는 산성 음료에서의 용해도 증가, 환자들의 소화력과 알러지 내성의 개선, 다른 기능적 특성의 개발 등을 위하여 식품산업에 널리 이용되고 있다. 그러나 우유 단백질이나 대두 단백질과 같은 몇 가지 단백질들은 가수분해에 의하여 강한 쓴맛을 형성한다, 단백질 가수분해물의 쓴맛에 관한 연구는 1950년대 초에 시작되었으며, 여러 가지 원료로부터 쓴맛물질이 분리되었다. 이들 단백질 가수분해물의 쓴맛 물질은 올리고펩타이드로 알려져 있으며, 펩타이드 분자를 구성하는 소수성 아미노산의 존재와 밀접한 관계가 있는 것으로 보고되고 있다. 본 연구에서는 최근에 발달된 분석기술과 생명공학적 기법으로 E. coli에서 생산한 콩 단백질 단일 subunit를 이용하여 효소적 가수분해물의 분자구조를 확인하고자 하였다. 탈지대두박으로부터 115 glycinin와 E.coli떼서 발현된 proglycinin을 각각 90%, 97%의 정제도로 분리하여 이들 단백질을 trypsin으로 각각 가수분해하였다. 115 glycinin은 효소/기질 비 3%에서 4시간 가수분해에 의해 $14.0{\times}10^{-5}$ M quinine-HCI equivalent의 강한 쓴맛을 나타내었으며, 12%의 가수분해도(DH)를 나타내었다. 대두 단백질의 쓴맛 성분을 확인 위하여 이미 아미노산 서열이 밝혀진 11S glycinin과 proglycinin 가수분해물에서 GP-HPLC, $C_{18}$ RP-HPLC 등을 통하여 쓴맛 peptide들을 분리하였다. 각각의 분획은 다시 21개의 peptide로 분리되어 그 서열이 결정되었으며 이중 RP와 GI는 이미 알려진 쓴맛 dipeptide였고, LAGNQEQE, SAEFG, NALPE, KLHENIAR, GMIYPG 등이 주된 쓴맛 Peptide로 확인되었다. 이들은 11S glycinin의 5개의 subunit 중에서 그 위치가 확인되었다. Proglycinin 가수분해물에서도 11S glycinin과 같은 방법으로 7개의 쓴맛 peptide가 분리되었다. 이들은 $A_{1a}B_{1b}$의 아미노산 서열 중에서 37-42, 103-110, 164-167, 323-327, 367-373의 위치에 분포하고 있었으며, NALKPD, IYPGCPST, SlDT, HNIGQT, NAMFVPH의 서열을 나타내었다. 분리된 쓴맛 peptide 중에서 가장 쓴 두 분회의 peptide를 합성하여 관능 검사한 결과, NALPE는 매우 쓴맛을 내는 peptide로 확인되었다.

  • PDF

Angiotensin-I Converting Enzyme Inhibitory Activity of Enzymatic Hydrolysates of Food Proteins (식품단백질 효소가수분해물의 Angiotensin-I 전환효소 저해작용)

  • 염동민;노승배;이태기;김선봉;박영호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.2
    • /
    • pp.226-233
    • /
    • 1993
  • Enzymatic hydrolysates of food proteins (defatted soybean cake, egg albumin and casein) were tested for inhibitory activity against angiotensin-I converting enzyme (ACE). Food proteins were hydrolysed with complex enzyme, bromelain, alcalase, $\alpha$-chymotrypsin, trypsin, papain and pepsin by heating method. The hydrolysates obtained from the treatment of complex enzyme and bromelain showed the higher ACE inhibitory activity. ACE inhibitory activity of hydrolysates exhibited a tendency to be increased until 8hrs and increased with increment of concentration. The activity was also stable by heat treatment at 10$0^{\circ}C$ for 20min. Molecular weight of active fraction was about 1, 400 and defatted soybean cake hydrolysate below 1, 400 in case of defatted soybean cake hydrolysate treated with alcalase. Amino acid of the active fractions was abundant in Asp, Glu, Lys, lle, Leu, Ala and Val.

  • PDF

Effect of Sodium Caseinate Hydrolysates on Angiotensin-I Converting Enzyme Inhibition Activity (Sodium Caseinate 가수분해물의 Angiotensin-I Converting Enzyme 저해효과에 관한 연구)

  • Lee, Keon-Bong;Shin, Yong-Kook;Baick, Seung-Chun
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.652-658
    • /
    • 2012
  • This study was carried out to identify the ACE (Angiotensin converting enzyme) inhibitory activity of casein hydrolysates for development of anti-hypertensive hydrolysates. Sodium caseinate was treated with six kinds of commercial proteases such as Flavourzyme, Protamex, Neutrase 1.5, Alcalase, Protease M, and Protease S for 8 h individually, and was then treated with the enzyme combination for 4 h at $45^{\circ}C$. The hydrolysate which had the highest ACE inhibitory effect was then hydrolysed successively with three digestive enzymes: pepsin, trypsin, and ${\alpha}$-chymotrypsin, at $37^{\circ}C$ for 4 h under conditions mimicking those of the gastrointestinal tract. UF (ultra filtration) treatment was applied to one of the secondary hydrolysates to determine ACE inhibitory activity. When sodium caseinate was hydrolysed by commercial proteases, the degree of hydrolysis (DH) showed 2.54 to 4.25% and after secondary hydrolysis, DH showed 4.30 to 5.22%. ACE inhibitory activity and $IC_{50}$ values decreased, and inhibition rates increased during hydrolysis. Protamex treatment showed the lowest $IC_{50}$ value ($516{\mu}g/mL$) and Flavourzyme hydrolysate showed the highest $IC_{50}$value ($866{\mu}g/mL$). As the first hydrolysate was treated with Flavourzyme, the ACE inhibitory activity increased. Neutrase hydrolysate had the highest activity with an $IC_{50}$ value ($282{\mu}g/mL$). When Neutrase plus Flavourzyme treatment was hydrolyzed by digestive enzymes, the $IC_{50}$ value ($597{\mu}g/mL$) was decreased statistically (p<0.05). As Neutrase plus Flavourzyme hydrolysate is treated by UF with MW cut-off 10,000, permeate showed $273{\mu}g/mL$ of $IC_{50}$ value, showed no difference, but retentate which has over MW 10,000 showed statistically different $IC_{50}$ value, $635{\mu}g/mL$ (p<0.05).

Studies on the Enzymatic Partial Hydrolysis of Soybean Protein Isolates (효소처리에 의한 분리대두 단백질의 부분 가수분해에 관한 연구)

  • Lee, Cherl-Ho;Kim, Chan-Shick;Lee, Sam-Pin
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.228-234
    • /
    • 1984
  • A partial hydrolysis of soybean protein isolate was carried out by using pepsin and trypsin. The degree of hydrolysis was evaluated by chemical analysis, viscometric measurements and gel electrophoresis. The functional properties of the hydrolyzates such as flow behavior, emulsion properties and foaming properties were evaluated. A selective hydrolysis of 11S protein fraction by pepsin was observed from the SDS-PAG electrophoresis. The changes in the molecular weight distribution by different conditions of enzyme hydrolysis were evaluated. The changes in the intrinsic viscosity of the protein hydrolylate by reaction time were highly correlated to the contents of TCA soluble protein and 0.03 M $CaCl_2$ soluble nitrogen. The degree of hydrolysis ($DH_{TCA}$, $DH_{Ca}$) were used to evaluate the effect of enzyme treatment on the functional properties of the hydrolyzate. The apparent viscosity and emulsion capacity and stability of the protein solution decreased as DH increased, while the foaming capacity increased linearly with the increasing DH.

  • PDF

대두 단백 효소 가수분해물의 항균활성

  • 주정현;이상덕;이규희;이기택;오만진
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.04a
    • /
    • pp.145.1-145
    • /
    • 2003
  • 대두 단백질을 효소로 가수분해 하였을 때 생성되는 peptide의 항균활성을 조사하고 천연항균제로서 이용 가능성을 검토하기 위하여 분리 대두 단백질에 5종의 단백질 가수분해 효소를 작용시켜 생성된 가수분해물의 항균력을 측정하고 한외여과하여 분자량별로 분리된 각 fraction의 항균활성과 HPLC로 정제하여 항균성 peptide 의 아미노산 결합순서를 분석하여 다음과 같은 결론을 얻었다. 분리대두 단백질에 5종의 단백질 분해효소를 작용시켜 제조한 가수분해물 중 Asp.saitoi protease로 작용시킨 것이 항균활성이 높았다. Asp. saitoi protease로 작용시킨 대두 단백질의 가수분해물을 membrane filter로 여과한 결과 분자량 1000-3000 fraction에서 항균활성이 가장 높았다. 분자량 1000-3000 범위을 가진 가수분해물의 MIC는 0.5-0.8mg/$m\ell$ 이었으며 그람 양성균과 음성균 모두의 증식을 억제하는 경향을 보였다. 분리 대두 단백으로부터 얻어진 항균성 peptide는 121$^{\circ}C$, 10분간 열처리하여도 안정하였으며 한외여과에 의하여 분자량 1000-3000범위의 가수분해물을 동결건조하여 gel filteration하였을 때 2개의 fraction에서 항균 활성을 나타내었다. HPLC결과 RT 16.02 의 peak에서 항균활성이 확인되었고 질량은 1,633이었으며 아미노산 결합순서는 H$_2$N-G-P-P-G-V-V-A-T-V-V-A-A-R-COOH 이었다.

  • PDF

Effect of the Hydrolysate of Pigs Hoof on Plant Growth and Physico-chemical Properties (Pigs hoof 가수분해물의 이화학성 및 작물 생육에 미치는 효과)

  • Han, Sang-Gyun;Cho, Chun-Hwi;Jeon, Han-Ki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.200-205
    • /
    • 2011
  • This study was conducted to find the physico-chemical properties and the amino acid content of the pigs hoof hydrolysate, keratin protein and to investigate its fertilizer effect on the growth of crops. The keratin proteins such as pigs hoof were alkali-hydrolyzed to produce the hydrolysates. The chemical properties of the hydrolysate of pigs hoof was 6~7 of pH and $10{\sim}15dS\;m^{-1}$ of EC. Total amino acid contents released from the pigs hoof were 10.18%, respectively. The pot experiment was carried out for the cultivation of lettuce. The treatment design of these pot cultivation was composed of Control (compost + NPK), PHH-0.5, PHH-1.0, PHH-2.0 (${\times}2,000$ ; 1,000 ; 500 diluted solution of pig hoof hydrolysate). After lettuce cultivation, the pH values in all treatment soils were decreased than those in initial soils, and the exchangeable cation value was higher than that of control. In all PHH treatments, lettuce growth was better in the leaf length by 6~16% and the leaf width by 4~15% than in control. Therefore, the PHH solutions manufactured by hydrolysis process had plenty of amino acids, and among them PHH had the most abundant nutrients and amino acids with highest growth and yield effect on lettuce.

Protein Hydrolysis with Formic Acid and Analysis of Amino Acid Using Butylthiocarbamyl - trimethylsilyl (BTC - TMS) Derivatives by Gas Chromatography

  • 우강융;이동선;김민철
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.320-324
    • /
    • 2003
  • The protein hydrolysis with 6 M formic acid containing 0.3% tryptamine was a superior method for amino acid analysis of standard amino acid and protein than 6 M HCI containing 0.3% tryptamine. The recoveries of standard amino acid after acid hydrolysis were more accurate in the 6 M formic acid hydrolysis than 6 M HCI hydrolysis, especially recovery of tryptophan showed higher values of 1.5 times than that of 6 M HCI hydrolysis. The results of analysis on the standard protein, bovine serum albumin, showed very similar values compared to the sequence analysis reported in the literature for the 6 M formic acid hydrolysis than 6 M HCI hydrolysis, especially in the tryptophan recovery as standard amino acid recovery. Butylthiocarbamyl - trimethylsilyl (BTC - TMS) derivatives of 22 standard amino acids were successfully resolved DB-17 capillary column. Excellent reproducibility of standard amino acid recovery and composition of bovine serum albumin were obtained with BTC-TMS derivatives.

Preparation of Branched-chain Amino Acid (BCAA)-enriched Hydrolysates from Corn Gluten (고 분지아미노산 함유한 옥수수 단백가수물의 제조조건 탐색)

  • Chung, Yong-Il;Bae, In-Young;Lee, Hyeon-Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • The process of the preparation of branched-chain amino acid (BCAA)-enriched hydrolysates from corn gluten was optimized through the parameters of pre-treatment (heating and cellulosic hydrolysis), hydrolysis method (acid, protease, and microbe plus protease), concentration, and spray drying condition. The protein yield of corn gluten was increased by heating and cellulase treatments. Among three different hydrolysis methods, the combined use of microbes and protease was the most effective in terms of free amino acid (FAA) and BCAA content of the corn gluten hydrolysates. In addition, the FAA and BCAA content in the hydrolysates prepared by microbial and enzymatic combined treatment were improved by a concentration process. Spray drying conditions for the preparation of the powder from the hydrolyzed reactant were an inlet temperature of $185^{\circ}C$, outlet temperature of $80^{\circ}C$, and the use of maltodextrin as an anticaking agent. Thus, this study established an economical process for preparation of value-added hydrolysates of excellent productivity and quality, in terms of high BCAA content and product stability.

Hydrolysis Characteristics of Goat Milk $\beta-Casein$ by Enzyme and Angiotensin Converting Enzyme Inhibition Effects of Hydrolysate (산야유 $\beta-Casein$의 효소 가수분해 특성과 가수분해물의 Angiotensin Converting Enzyme 저해 효과)

  • Park Yong-Kuk;Kwon Il-Kyoung;Kim Gur-Yoo
    • Food Science of Animal Resources
    • /
    • v.25 no.2
    • /
    • pp.238-243
    • /
    • 2005
  • This study was carried out to understand hyrolytic characteristics of $\beta-casein$ by enzyme in goat milk and to measure the inhibition effect of the ACE of the hydrolysate. In order to conduct the experiment, $\beta-casein$ of goat milk was separated using Mono S HR 5/5, a cation exchange column. The separated $\beta-casein$ was treated with trypsin of animal hydrolysis enzymes, in an effort to verify the characteristics of hydrolysis. The inhibition activity of ACE was measured and the results are as follows. By analyzing the hydrolysate separated from the trypsin-processed $\beta-casein$ of goat milk, the inhibition effect of the ACE was measured trypsin-hydrolyzed $\beta-casein$ demonstrated a $25.36\pm0.79\%$ of inhibition effect and the $IC_{50}$ of the hydrolysate from the trypsin-processed $\beta-casein$ reached $308.7\pm2.77({\mu}g/mL)$.

Response of hydrolyzed polyacrylonitrile fibers to pH (가수분해 폴리아크릴로니트릴 섬유의 pH 응답성)

  • 우종형;서영삼;윤기종;조재환;정재윤
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.345-346
    • /
    • 2003
  • 폴리아크릴로니트릴을 NaOH로 가수분해시키면 carboxylate anion과 carboxamide기가 생성되며, 물을 흡수할 경우 sodium carboxylate기의 해리로 팽윤이 크게 일어나므로 고흡수성을 지니게 된다[l]. 일반적으로 섬유가 팽윤을 하면 수축하며, 가수분해된 폴리아크릴로니트릴 섬유는 흡수되는 물 속의 염의 농도 또는 pH에 따라 팽윤도가 다르기 때문에 가수분해된 시간과 pH조건 변화에 따라서 수축하는 정도가 다르다. 과거의 연구결과에 의하면 아크릴 섬유는 2M HCI에서 최소의 길이로 수축하며, 2M NaOH에서 최대의 길이가 나타난다고 하였다[2]. (중략)

  • PDF