단백질의 부분 가수분해는 산성 음료에서의 용해도 증가, 환자들의 소화력과 알러지 내성의 개선, 다른 기능적 특성의 개발 등을 위하여 식품산업에 널리 이용되고 있다. 그러나 우유 단백질이나 대두 단백질과 같은 몇 가지 단백질들은 가수분해에 의하여 강한 쓴맛을 형성한다, 단백질 가수분해물의 쓴맛에 관한 연구는 1950년대 초에 시작되었으며, 여러 가지 원료로부터 쓴맛물질이 분리되었다. 이들 단백질 가수분해물의 쓴맛 물질은 올리고펩타이드로 알려져 있으며, 펩타이드 분자를 구성하는 소수성 아미노산의 존재와 밀접한 관계가 있는 것으로 보고되고 있다. 본 연구에서는 최근에 발달된 분석기술과 생명공학적 기법으로 E. coli에서 생산한 콩 단백질 단일 subunit를 이용하여 효소적 가수분해물의 분자구조를 확인하고자 하였다. 탈지대두박으로부터 115 glycinin와 E.coli떼서 발현된 proglycinin을 각각 90%, 97%의 정제도로 분리하여 이들 단백질을 trypsin으로 각각 가수분해하였다. 115 glycinin은 효소/기질 비 3%에서 4시간 가수분해에 의해 $14.0{\times}10^{-5}$ M quinine-HCI equivalent의 강한 쓴맛을 나타내었으며, 12%의 가수분해도(DH)를 나타내었다. 대두 단백질의 쓴맛 성분을 확인 위하여 이미 아미노산 서열이 밝혀진 11S glycinin과 proglycinin 가수분해물에서 GP-HPLC, $C_{18}$ RP-HPLC 등을 통하여 쓴맛 peptide들을 분리하였다. 각각의 분획은 다시 21개의 peptide로 분리되어 그 서열이 결정되었으며 이중 RP와 GI는 이미 알려진 쓴맛 dipeptide였고, LAGNQEQE, SAEFG, NALPE, KLHENIAR, GMIYPG 등이 주된 쓴맛 Peptide로 확인되었다. 이들은 11S glycinin의 5개의 subunit 중에서 그 위치가 확인되었다. Proglycinin 가수분해물에서도 11S glycinin과 같은 방법으로 7개의 쓴맛 peptide가 분리되었다. 이들은 $A_{1a}B_{1b}$의 아미노산 서열 중에서 37-42, 103-110, 164-167, 323-327, 367-373의 위치에 분포하고 있었으며, NALKPD, IYPGCPST, SlDT, HNIGQT, NAMFVPH의 서열을 나타내었다. 분리된 쓴맛 peptide 중에서 가장 쓴 두 분회의 peptide를 합성하여 관능 검사한 결과, NALPE는 매우 쓴맛을 내는 peptide로 확인되었다.
효소에 의한 가수분해로 식품단백질로부터 생리활성 peptide의 생성을 밝히기 위한 연구의 일환으로 효소에 의한 단백질 가수분해물의 ACE 저해작용을 검토한 결과는 다음과 같다. 1. 가수분해에 따른 ACE 저해능은 가수분해 8시간까지는 급격히 증가하다가 그 후로는 완만하게 증가하였으며, 특히 복합효소, bromelain 및 pepsin등에 의해 우수하게 나타났다. 그러나 trypsin 및 $\alpha$-chymotrypsin에 의한 egg albumin 및 casein 가수분해시에는 가수분해 8시간 이후에는 오히려 감소하는 경향을 나타내었다. 2. 단백질 가수분해물의 ACE 저해능은 첨가량의 증가와 함께 우수한 것으로 나타났으며, 가열에 대하여 비교적 안정한 것으로 나타났다. 3. 단백질 가수분해물의 아미노산 조성은 거의 유사한 것으로 나타났으며, 특히 glutamic acid의 함량이 월등히 많은 것으로 나타났다. 그러나 egg albumin 가수분해물의 경우는 glutamic acid의 함량이 적은 반면 alanine 및 cysteine의 함량이 다소 많은 것으로 나타났다 4. Gel 여과에 의한 단백질 가수분해물의 획분별 ACE 저해작용은 서로 비슷한 획 분에서 나타났으며 이 때의 분자량은 1,400부근으로 나타났다. 5. Gel 여과에 의한 ACE 저해작용 획분의 아미노산 조성은 서로 다른 것으로 나타났다.
본 연구는 유단백질 유래 카제인염을 상업용 단백질가수분해 효소로 처리하여 효소의 종류와 가수분해 시간에 따른 ACE 저해효과를 살펴보고 주요 성인병인 고혈압의 예방을 위한 혈압강하 효과가 높은 가수분해물을 제조하고자 수행하였다. 카제인염을 6종의 단백질 분해효소로 기질대 효소비 1000:1로 첨가하여 8시간 가수분해했을 때 가수분해도는 2.54-4.25%로 나타났고, 다시 가수분해물을 기질대 효소비 500:1로 처리하여 4시간 동안 2차 가수분해하였을 때 4.30-5.22%의 가수분해가 일어났다. 효소별 가수분해물의 ACE 저해효과는 가수분해가 진행됨에 따라 $IC_{50}$의 수치는 감소하였고 저해율을 증가하였다. 1차 가수 분해시 8시간 가수분해한 가수분해물의 $IC_{50}$ 수치는 Protamex 처리군이 $516{\mu}g/mL$로 가장 낮았고 Flavourzyme이 $866{\mu}g/mL$로 가장 높았다. 1차 가수분해물을 Flavourzyme로 4시간 2차 가수분해를 하였을 때 1차 가수분해물 보다 $IC_{50}$ 수치가 감소되어 ACE저해 효과가 증가하였으며 Neutrase로 처리하였을 때 $282{\mu}g/mL$로 가장 낮았고 Protease M이 $570{\mu}g/mL$로 가장 효과가 적었다. 가장 효과가 좋은 Neutrase 2차 가수분해물을 소화효소인 pepsin, trypsin, ${\alpha}$-chymotrypsin으로 가수분해 하였을 경우 $IC_{50}$ 수치는 $597{\mu}g/mL$로 1차 가수분해물보다 저해효과가 유의적으로 감소되었다(p<0.05). Neutrase 2차 가수분해물을 MW 10,000로 한외여과하였을 때 MW 10,000 미만 permeate의 $IC_{50}$ 수치는 $273{\mu}g/mL$로 저해효과는 유의차가 없었으나, 10,000 이상의 retentate는 $IC_{50}$ 수치가 $635{\mu}g/mL$로 유의적 수준에서 저해효과가 감소하였다(p<0.05). 이에 효소의 종류와 가수분해 시간의 조합에 의한 ACE 저해활성을 측정하고 분리공정을 최적화하기 위한 추가 연구를 수행한다면 주요 유단백질인 카제인 유래 기능성 식품의 산업적 대량생산이 가능할 것으로 사료된다.
탈지 대두박으로 부터 추출 분리하여 얻어진 분리대두 단백질에 효소(pepsin 및 trypsin)를 처리하여 부분적 단백질 가수분해물을 만들고 이들 제품의 가수분해 정도를 고유점도 측정, 수용성 단백질 및 유리아미노산 농도 측정과 전기영동등으로 평가하였으며 가수분해물의 유체변형성과 식품기능성외 변화를 평가하였다. 가수분해물의 고유점도는 사용된 효소의 종류와 처리시간에 따라 변화하였으며 가수분해에 의한 수용성 단백질의 농도 변화와 일반적으로 역비례 하였다. 0.03 M$CaCl_2$, 용액에서의 용해도와 ninhydrin test에 의한 TCA가용성 단백질 함량은 고유점도의 변화와 밀접한 상관관계를 나타내었으므로 가수분해 정토를 나타내는 지표로 사용될 수 있었다. S. D. S. - P. A. G. 전기영동 패턴은 사용한 효소와 처리시간에 따라 다른 형태를 나타냈으며 pepsin처리에 있어서는 가수분해 정도가 증가함에 따라 주로 11S분획이 선택적으로 분해되었으며 trypsin처리에 있어서는 7S와 11S모두 영향을 받았다. 가수분해물의 흐름형태는 4%용액에서 거의 New tonian 유체형태를 나타내었으며 apparent viscosity는 가수분해 정도가 증가함에 따라 감소하였다. 유화용량 및 유화안정도는 SPI보다 모두 낮은 값을 나타냈으며 같은 효소처리인 경우 가수분해 정도가 증가함에 따라 감소하는 경향을 나타내었다. 기포형성은 SPI보다 현저하게 증가하였으나 기포안정도는 가수분해 정도가 증가함에 따라 급격하게 감소하는 경향을 나타내었다.
대두 단백질을 효소로 가수분해 하였을 때 생성되는 peptide의 항균활성을 조사하고 천연항균제로서 이용 가능성을 검토하기 위하여 분리 대두 단백질에 5종의 단백질 가수분해 효소를 작용시켜 생성된 가수분해물의 항균력을 측정하고 한외여과하여 분자량별로 분리된 각 fraction의 항균활성과 HPLC로 정제하여 항균성 peptide 의 아미노산 결합순서를 분석하여 다음과 같은 결론을 얻었다. 분리대두 단백질에 5종의 단백질 분해효소를 작용시켜 제조한 가수분해물 중 Asp.saitoi protease로 작용시킨 것이 항균활성이 높았다. Asp. saitoi protease로 작용시킨 대두 단백질의 가수분해물을 membrane filter로 여과한 결과 분자량 1000-3000 fraction에서 항균활성이 가장 높았다. 분자량 1000-3000 범위을 가진 가수분해물의 MIC는 0.5-0.8mg/$m\ell$ 이었으며 그람 양성균과 음성균 모두의 증식을 억제하는 경향을 보였다. 분리 대두 단백으로부터 얻어진 항균성 peptide는 121$^{\circ}C$, 10분간 열처리하여도 안정하였으며 한외여과에 의하여 분자량 1000-3000범위의 가수분해물을 동결건조하여 gel filteration하였을 때 2개의 fraction에서 항균 활성을 나타내었다. HPLC결과 RT 16.02 의 peak에서 항균활성이 확인되었고 질량은 1,633이었으며 아미노산 결합순서는 H$_2$N-G-P-P-G-V-V-A-T-V-V-A-A-R-COOH 이었다.
본 실험은 케라틴 단백질인 Pigs hoof를 알칼리 가수분해하였을 때, 그 가수분해물의 아미노산 함량을 알아보고 액상비료로서의 이용성을 고찰하는 한편, 작물에 시비하였을 경우의 영향 등을 평가하여, 식물환경 연구에 관한 기초자료로 활용하고자 수행하였다. 가수분해물의 화학적 특성을 조사한 결과, pH는 6~7, EC는 $10{\sim}15dS\;m^{-1}$, 질소는 1~3% 범위였으며, 기타 성분은 모두 0.2% 미만인 것으로 조사되었다. 가수분해물에 함유된 유리아미노산의 총 함량은 10.18%로 분석되었다. 상추 재배 후 가수분해물을 처리한 모든 처리구의 토양 pH는 초기보다 감소하였으며, 치환성 양이온은 Control보다 가수분해물 처리구에서 증가하는 결과를 보였다. 상추의 엽장과 엽폭은 Control보다 6~16%, 4~15%가 증가되었으며, 특히 Pigs hoof 가수분해물 500배액을 엽면시비한 PHH-2.0 처리구가 가장 높은 결과를 나타내었다. 이러한 결과는 가수분해물의 pH 및 성분함량이 영향을 미쳤기 때문인 것으로 판단된다. 식물체 양분 함량 중 질소는 pigs hoof 가수분해물 500배 희석액을 처리한 PHH-2.0 처리구가 4.19%로 가장 높은 결과를 보였다. 다양한 아미노산을 함유하고 있는 가수분해물을 상추에 처리하였을 때, 상추의 질소 흡수가 촉진되는 것으로 판단된다. 결론적으로, 가수분해 과정을 통해 생성된 pigs hoof 가수분해물에는 작물 생육을 위한 성분과 아미노산이 다량 함유되어 있는 것으로 조사되었다. 또, 가수분해물 엽면시비시 상추의 생육 및 수량 증대효과를 보였으며, pigs hoof 가수분해물 1,000배액 처리가 경제성 및 효과 면에서 가장 적절할 것으로 보인다. 이처럼 케라틴 부산물의 가수분해물은 비료로서의 효과가 인정되었으나, 여러 조건을 통하여 분해율을 상승시킬 수도 있지만, 액상비료로 이용하기 위해서는 경제성, 생산성, 효율성 등을 고려하여 적정 수준을 유지하는 것이 바람직할 것으로 판단된다.
단백질 구성 아미노산 분석을 위한 효과적인 가수분해 방법을 찾기 위하여 0.3% tryptamine을 함유한 6M formic acid와 6M HCI을 표준 아미노산과 단백질 표준품인 bovine serumn albumin 가수분해에 적용하여 표준아미노산의 회수율과 bovine serum albumin의 아미노산 조성을 분석하였고 GC에 의한 효과적인 아미노산 분석을 위하여 새로운 유도체인 butylthiocarbamyl-trimethylsilyl(BTC-TMS)유도체를 개발하여 분석한 결과는 다음과 같았다 표준아미노산의 회수율은 6M formic acid에 의한 가수분해방법이 6M HCI에 의한 가수분해 방법보다 상당히 정확하였고 특히 산 가수분해에서 tryptamine의 존재하에서도 잘 파괴되는 tryptophan의 경우 formic acid가수분해가 HCI가수분해보다 1.5배정도 높은 회수율을 보였다. Bovine serum albumin의 아미노산 조성을 583 아미노산 잔기로 환산하여 나타내었을 경우도 formic acid에 의한 가수분해가 HCI가수분해 경우보다 훨씬 정확하였고 이 때 tryptophan의 회수율도 훨씬 높게 나타났다. 다만 서열분석에서 분석되지 않는 cystine이 formic acid 가수분해시 분석되고 있어 이에 대한 정확한 검정이 필요하였다. BTC-TMS 유도체는 GC분석시 극성이 다소 낮은 DB-l7 column으로 분리가 잘되었고 재현성도 좋았으나 GC분석을 위한 대부분의 유도체에서와 마찬가지로 몇 가지 아미노산에서 두 개의 peak로 나타나는 결점이 있었다.
본 연구에서는 원료의 전처리, 가수분해 방법, 농축과정 및 제형화 공정을 최적화하여 BCAA 함량이 증가된 옥수수 펩타이드 제조법을 확립하였다. 옥수수 글루텐의 단백질 회수율은 증자와 탄수화물 분해효소 처리 등의 전처리 과정에 의해 약 11% 정도 증가하였다. 가수분해 방법에서는 미생물을 배양하여 제조한 코지에 상업용 효소를 소량 혼합하여 반응시킨 가수분해물에서 향상된 유리아미노산 및 BCAA 함량을 얻을 수 있었다. 또한, 가수분해 반응액은 농축과 여과를 통해 BCAA의 함량이 약 100% 정도 향상되었다. 위의 조건에서 제조한 옥수수 가수분해 반응물의 분말화를 위해 분무건조기의 온도와 고결방지제 종류를 비교한 결과, inlet 온도 $185^{\circ}C$, outlet 온도 $80^{\circ}C$, 분산속도 18,000 rpm에서 2% maltodextrin을 사용 시 가장 좋은 상태의 분말 제품을 얻을 수 있었다. 이와 같은 가수분해 및 분말화 공정을 통해 단백질 이용률이 32%까지 향상되고, BCAA 함량이 전체 유리아미노산 대비 41%의 높은 비율로 구성되어 있는 옥수수 글루텐 가수분해물을 제조할 수 있었다. 이상과 같이, 본 연구에서는 옥수수 글루텐 가수분해물 제조를 위한 최적화 과정을 통해 BCAA가 풍부한 가수분해물 제조와 최종 제품의 품질 안정화 조건을 확립할 수 있었다. 또한, 본 연구에서 개발한 미생물(코지)과 효소를 동시에 사용하는 방법에 의하여 옥수수 글루텐을 가수분해하면 적은 양의 효소사용으로 유사한 유리아미노산 및 BCAA 함량을 나타내는 가수분해물을 얻을 수 있다. 따라서, 본 연구에서 개발한 옥수수 글루텐 가수분해물 제조공정은 매우 효율적이며, 경제적인 방법이라 할 수 있다.
산양유 $\beta-casein$의 효소에 의한 가수분해 특성과 가수분해물의 ACE 저해 효과를 측정하고자 산양유의 $\beta-casein$을 양이온 교환 컬럼인 Mono S HR 5/5를 이용하여 분리하였으며 분리된 $\beta-casein$을 동물성 분해효소인 trypsin으로 처리하여 가수분해 특성을 확인하였고 가수분해물의 ACE 저해활성을 측정하였다. Mono S HR 5/5 양이온 교환 컬럼을 이용한 산양유 산 케이신으로 부터 순수한 $\beta-casein$의 분리는 SDS-PAGE를 이용하여 확인한 결과 순수한 $\beta-casein$의 분리가 이루어졌음을 확인할 수 있었다. $\beta-casein$을 $37^{\circ}C4$에서 trypsin으로 처리하여 전기영동으로 확인한 결과 가수분해 직후부터 $\beta-casein$ 위치의 band가 희미해지기 시작하고 저분자량의 band가 나타나기 시작하였으나 120분이 지난 후에는 모든 band가 가수분해되어 사라졌고 산양유에서 분리된 $\beta-casein$을 trypsin으로 처리하여 120분 경과 후 그 가수분해물을 이용하여 ACE 저해효과를 측정한 결과 가수분해하지 않은 $\beta-casein$은 $1.80\pm1.21\%$의 ACE 저해활성을 보였으나 trypsin으로 가수분해하여 ACE 저해 활성을 측정하였을 때 $25.36\pm0.79\%$의 저해 활성을 나타내었으며, trypsin에 의한 $\beta-casein$가수분해물의 $IC_{50}$을 측정한 결과 $308.7\pm2.77({\mu}g/mL)$로 나타났다.
폴리아크릴로니트릴을 NaOH로 가수분해시키면 carboxylate anion과 carboxamide기가 생성되며, 물을 흡수할 경우 sodium carboxylate기의 해리로 팽윤이 크게 일어나므로 고흡수성을 지니게 된다[l]. 일반적으로 섬유가 팽윤을 하면 수축하며, 가수분해된 폴리아크릴로니트릴 섬유는 흡수되는 물 속의 염의 농도 또는 pH에 따라 팽윤도가 다르기 때문에 가수분해된 시간과 pH조건 변화에 따라서 수축하는 정도가 다르다. 과거의 연구결과에 의하면 아크릴 섬유는 2M HCI에서 최소의 길이로 수축하며, 2M NaOH에서 최대의 길이가 나타난다고 하였다[2]. (중략)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.