• 제목/요약/키워드: 가솔린 직접분사식 엔진

검색결과 47건 처리시간 0.025초

GDI 와류 분사노즐에 의한 비증발 분무의 가시화 및 수치해석 (Visualization and Numerical Analysis of Non-evaporating Spray with a Swirl-Type GDI Injector)

  • 원영호;강수구
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.22-28
    • /
    • 2003
  • Predictions of the fuel spray dispersion and mixing processes are very important to improve the fuel consumption and exhaust emissions in GDI engines. Numerical and experimental analysis of the sprays with a swirl injector have been conducted. A numerical analysis is carried out using KIVA-II code with modified spray models. Experimental measurements are performed to show the global spray images and the local images near nozzle tip using laser sheet visualization technique. Computed and measured spray characteristics such as spray width, tip penetration are compared, and good agreements can be achieved. The spray head vortex is stronger as the injection pressure increases, but numerical calculations cannot show the head vortex properly.

가솔린 및 LPG 연료를 사용하는 직접분사식 불꽃점화엔진에서 배출되는 극미세입자 배출 특성에 관한 연구 (Particulate Emissions from a Direct Injection Spark-ignition Engine Fuelled with Gasoline and LPG)

  • 이석환;오승묵;강건용;조준호;차경옥
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.65-72
    • /
    • 2011
  • In this study, the numbers, sizes of particles from a single cylinder direct injection spark-ignition (DISI) engine fuelled with gasoline and LPG are examined over a wide range of engine operating conditions. Tests are conducted with various engine loads (2~10bar of IMEP) and fuel injection pressures (60, 90, and 120 bar) at the engine speed of 1,500 rpm. Particles are sampled directly from the exhaust pipe using rotating disk thermodiluter. The size distributions are measured using a scanning mobility particle sizer (SMPS) and the particle number concentrations are measured using a condensation particle counter (CPC). The results show that maximum brake torque (MBT) timing for LPG fuel is less sensitive to engine load and its combustion stability is also better than that for gasoline fuel. The total particle number concentration for LPG was lower by a factor of 100 compared to the results of gasoline emission due to the good vaporization characteristic of LPG. Test result presents that LPG for direct injection spark ignition engine help the particle emission level to reduce.

저압 분사조건에 따른 직접분사 LPG의 분무 및 연소특성 연구 (An Study on Spray and Combustion Characteristics of Direct Injection LPG under Low Pressure Injection Condition)

  • 황성일;정성식;염정국;이진현
    • 한국가스학회지
    • /
    • 제20권1호
    • /
    • pp.52-61
    • /
    • 2016
  • 액화석유가스는 환경 친화적이며 에너지 효율성과 출력성능이 뛰어나 실용성이 높고, 경쟁연료에 비해 가격 경쟁력이 우수하기 때문에 촉망받는 대체연료 중 하나로 간주된다. 스파크점화 엔진에서 직분식 기술은 엔진 체적효율을 눈에 띄게 증가시키며, 상대적으로 더 높은 연소효율이 가능한 성층급기를 이용해 엔진을 작동시킨다. 본 연구에서는 가솔린직접분사 엔진의 원리를 적용하여 가시화 시스템을 장착한 연소실을 설계하였다. 이를 통해 스파크점화직분식 LPG의 점화성과 화염전파 과정을 디지털 방식으로 기록하고 분석하였다. 이러한 연구의 결과는 스파크점화직분식 LPG 엔진의 설계 및 최적화를 위한 광범위한 기초 자료로서 기여하고자 한다.

횡방향 유속 변화에 따른 고압 가솔린 팬형 인젝터의 분무특성 (Spray Characteristics of High Pressure Fan Spray Injector with Various Crossflow Speed)

  • 최재문;문석수;배충식
    • 한국분무공학회지
    • /
    • 제10권3호
    • /
    • pp.38-44
    • /
    • 2005
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced from the injector of DIS(Direct Injection Spark Ignition) engine is of paramount importance in DISI engines. Fan-spray injector as well as swirl-spray injector was developed and utilized to the DISI engines. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engineer. The direct Mie scattered images presented the macroscopic view of the liquid spray fields interacted with crossflow. Particle sizes of fuel droplets were measured with phase Doppler anemometer(PDA) system. A faster cross-flow field made SMD larger and $D_{10}$ smaller. The experiments show the interaction of air flow field and the fuel spray field of fan-spray. The results can be utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF

횡단공기류에서의 고압 가솔린 분사시 연료분무 특성 (Fuel-Spray Characteristics of High Pressure Gasoline Injection in Cross Flows)

  • 이석환;최재준;김성수;이상용;배충식
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.30-39
    • /
    • 2001
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced by the high pressure injector is of paramount importance in DISI(Direct Injection Spark Ignition) engines in that the primary atomization process must meet the requirement of quick and complete evaporation, mixing with air and combustion especially to prohibit the excessive HC emissions. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engine. The direct Mie scattered and shadowgraph images presented the macroscopic view of the liquid sprays and vapor fields. The velocity and particle size of fuel droplets were investigated by phase doppler anenometer(PDA) system. The processes of atomization and evaporation with a DISI injector were observed and consequently utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF

GDI 엔진의 분할 분사가 아이들 연소 안정 및 배출물 특성에 미치는 영향 (The Effect of Split Injections on the Stability of Idle Combustion and Emissions Characteristic in a Gasoline Direct Injection Engine)

  • 노현구
    • 한국분무공학회지
    • /
    • 제19권4호
    • /
    • pp.221-226
    • /
    • 2014
  • This paper described the effect of split injections on the stability of combustion and emission characteristics in a direct injection gasoline engine at various operating conditions. In order to investigate the influence of direct injection gasoline engine, the fuel injection timing was varied direct fuel injection at various fuel pressure. The experimental apparatus consisted of GDI engine with 4 cylinder, EC dynamometer, injection control system, and exhaust emissions analyzer. The emission and combustion characteristics were analyzed for the fuel injection timing and fuel injection pressure strategies. It is revealed that CO and HC emissions are dramatically decreased at advanced injection timing. Also, engine performance is increased at increase fuel injection pressure.

스월형 GDI 엔진의 연료분포특성 연구 (Fuel Distribution Characteristics in a Swirl Type GDI Engine)

  • 김기성;박상규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.49-59
    • /
    • 2002
  • For the purpose of helping development of a GDI(Gasoline Direct Injection) engine, the spray behaviors and fuel distributions were investigated in a single cylinder GDI engine. The experimental engine is a swirl type GBI engine with a SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used for the measurement of the fuel distributions. The effects of SCV opening angle and the Injector specifications, such as the spray cone angle and the offset an91e on the fuel distributions characteristics were investigated. As a result, it was found that the SCV opening angle had a great effect on the fuel distributions in the late stage of compression process by changing flow fields in the combustion chamber.

  • PDF

가솔린 직분식 엔진의 연소실 개발을 위한 분무 및 유동장 해석 (Analysis of Spray and Flow Fields for Development of Spark-ignited Direct Injection Engine)

  • 최규훈;박종호;이내현
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.202-209
    • /
    • 1998
  • For development of SDI(Spark-ignited Direct Injection) engine, stratified mixture formation with adequate strength at spark plug was required in wide range of engine operating conditions. So, spray structure under high ambient pressure and spray distribution after impingement on piston bowl in motoring engine was visualized by using laser equipments. Also, incylinder bulk flow structure was measured by using PIV (Paiticle Image Velocimetry) system. Counter-rotating tumble port and bowl piston was found effective to conserve bulk motion directed to spark plug in compression stroke. In addition, mask attached near valve seat in intake port was proposed to attenuate conventional tumble component and enhance counter-rotating tumble component.

  • PDF

스월형 GDI 엔진의 연료혼합특성 연구 (Aspects of Mixture Formation in a Swirl Type GDI Engine)

  • 김기성;박상규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.260-271
    • /
    • 2003
  • For the Purpose of understanding the mixing phenomena of a GDI(Gasoline Direct Injection) engine, the spray behaviors and fuel distributions were investigated in a single cylinder transparent GDI engine. The experimental engine is a swirl type GDI engine with a SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used for the measurement of the fuel distributions. The effects of SCV opening angles and the injector specifications on the fuel distribution characteristics were investigated. As a result, it was found that the SCV opening angle had a great effect on the fuel distributions in the late stage of compression process by changing the flow fields in the combustion chamber.

가솔린 직접분사식 압축착화 엔진의 가능한 운전영역에 관한 기초실험 연구 (A Basic Experimental Study on Potential Operating Range in Gasoline Direct-Injection Compression Ignition (GDICI) Engine)

  • 차준표;윤성준;이석훤;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.33-35
    • /
    • 2013
  • The present work is an experimental investigation on potential operating range using directly injected gasoline fuel in a single-cylinder compression ignition (CI) engine. The objectives of present study were to apply auto-ignited combustion to gasoline fuel and to evaluate potential operating range. In order to auto-ignite gasoline fuel in CI engine, the fuel direct-injection system and the intake air system were modified that a flow rate and temperature of intake air were regulated. The heat-release rate (HRR), net indicated mean effective pressure (IMEP), start of combustion (SOC), and combustion duration were derived from in-cylinder pressure data in a test engine, which has 373.33cc displacement volume and 17.8 compression ratio. The exhaust emission characteristics were obtained emission gas analyzer and smoke meter on the exhaust line system.

  • PDF