• Title/Summary/Keyword: 가속도계 위치

Search Result 80, Processing Time 0.028 seconds

Development of Gait Analysis Algorithm for Hemiplegic Patients based on Accelerometry (가속도계를 이용한 편마비 환자의 보행 분석 알고리즘 개발)

  • 이재영;이경중;김영호;이성호;박시운
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.55-62
    • /
    • 2004
  • In this paper, we have developed a portable acceleration measurement system to measure acceleration signals during walking and a gait analysis algorithm which can evaluate gait regularity and symmetry and estimate gait parameters automatically. Portable acceleration measurement system consists of a biaxial accelerometer, amplifiers, lowpass filter with cut-off frequency of 16Hz, one-chip microcontroller, EEPROM and RF(TX/RX) module. The algerian includes FFT analysis, filter processing and detection of main peaks. In order to develop the algorithm, eight hemiplegic patients for training set and the other eight hemiplegic patients for test set are participated in the experiment. Acceleration signals during 10m walking were measured at 60 samples/sec from a biaxial accelerometer mounted between L3 and L4 intervertebral area. The algorithm, detected foot contacts and classified right/left steps, and then calculated gait parameters based on these informations. Compared with video data and analysis by manual, algorithm showed good performance in detection of foot contacts and classification of right/left steps in test set perfectly. In the future, with improving the reliability and ability of the algerian so that calculate more gait Parameters accurately, this system and algerian could be used to evaluate improvement of walking ability in hemiplegic patients in clinical practice.

Measurement and Analysis of Natural Frequencies of External Tendons in PSC Bridge (PSC교량 외부긴장재의 고유진동수 측정 및 분석)

  • Lee, Jun-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.141-142
    • /
    • 2009
  • This study discusses attempt of utilizing the natural frequencies to evaluate the effective stress of post-tensioned, external tendon in field. This type of structure has distinct advantage of good accessibility of tendon, which is considered to be one of essential elements in entire bridge. Six tendons in single span of PSC bridge were applied. They were excited using an impact hammer and corresponding vibrations were measured using multiple accelerometers. The stiff string model in idealized conditions was used to evaluate the effective stress in tendons.

  • PDF

Pinpointing of Leakage Location Using Pipe-fluid Coupled Vibration (파이프-유체의 연성진동을 이용한 누수위치 식별연구)

  • 이영섭;윤동진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • Leaks in underground pipelines can cause social, environmental and economical problems. One of relevant countermeasures against leaks is to find and repair of leak points of the pipes. Leak noise is a good source to identify the location of leak points of the pipelines. Although there have been several methods to detect the leak location with leak noise, such as listening rods, hydrophones or ground microphones, they have not been so efficient tools. In this paper, accelermeters aroused to detect leak locations which could provide an easier and more efficient method. Filtering, signal processing and algorithm of raw input data from sensors for the detection of leak location are described. A 120m-long and a 70m-long experimental pipeline systems are installed and the results with the systems show that the algorithm with the accelerometers offers accurate pinpointing for leaks location detection. Theoretical analysis of sound wave propagation speed of water in underground pipes, which is critically important in leak locating, is also described.

Pinpointing of Leakage Location of Water Pipelines using Accelerometers (가속도계를 이용한 상수도 배관의 누수위치 식별연구)

  • 이영섭;윤동진;정중채
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.821-826
    • /
    • 2003
  • Leaks in underground pipelines can cause social, environmental and economical problems. One of a good contermeasures of leaks Is to find and repair of leak points of pipes. Leak noise is a good source to identify the location of leak points of pipelines. Although there have been several methods to detect the leak location with leak noise, such as listening rods, hydrophones or ground microphones, they were not so efficient tools beca. In this paper, two accelermeters are used to detect leak locations which could provide an easier and efficient method. The filtering, signal processing and algorithm is described for the detection of leak location. A 120m-long pipeline system for experiment is installed and the results with the system show that the algorithm with the two accelerometers gives very accurate pinpointing of leaks. Theoretical analysis of sound wave propagation speed in underground pipes is also described.

  • PDF

Toward the Virtual Touch Pad using Mobile Devices and Acoustic Input (모바일 디바이스와 어쿠스틱 인풋을 이용한 가상 터치 인식 기술 설계)

  • Oh, Junho;Choi, Jaehoon;Kang, Jaewoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.815-817
    • /
    • 2010
  • 본 논문은 모바일 디바이스에 설치된 어쿠스틱 센서를 이용하여 가상의 터치패드를 구현하는 방법을 제시한다. 어쿠스틱 센서를 이용한 가상 터치패드 구현은 기존의 터치패드 방식에서 나타나는 대형화에 대한 한계를 극복함과 동시에 설치 및 유지비용을 낮추는데 큰 기여를 할 것으로 기대된다. 2 대의 아이폰에 설치되어 있는 단일채널 마이크 2 개, 자이로스코프와 가속도계, 블루투스 통신을 사용하여, 정해진 경계면에서 나오는 소리의 위치를 식별하고, 이를 화면과 동기화하여 간단한 조작을 가능하게 한다.

Vibration Control of a Cantilever Beam by Using a Piezoelectric Servo-Damper (압전형 서어보 감쇠기를 이용한 외팔보계의 진동제어)

  • 이상호;지원호;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.169-173
    • /
    • 1991
  • 최근 자동화기술의 발달에 따라 산업용 로보트팔의 경량화, 고속화를 실행하 게 되는 경우와 우주, 원자력발전소 등과 같은 특수한 환경하에서 매니퓰레 이터(manipulator)를 제어하게 되는 경우가 많아지고 있는데, 이때 팔의 강성 이 충분하지 않으면 위치결정시 목표점에서의 과도진동이 발생하게 되어 위 치결정정도와 작업효율이 저하된다. 그러므로 이러한 경량화된 장비들의 진 동특성을 파악하고 운동시 발생하는 진동을 효율적으로 제어할 수 있는 제 어기(controller)를 설계하여 잔류진동을 감쇠시키므로써 위치결정시간을 줄 일 수 있고, 전체 작업행정시간이 단축되므로써 작업ㅎ류을 향상시키는 효과 를 가져오게 된다. 이때 원하고자 하는 제어를 하기 위해서는 제어대상 (plant)의 계규명(system identification)을 정확히 하여야 하는데 해석적으로 계를 규명하기가 까다로운 경우 제어기를 설계하는 것이 사실상 어렵게 되 므로 이러한 경우 실험적인 방법으로 주파수응답함수(frequency response function)를 구해 계의 모형(model)을 구하는 방법이 널리 사용되고 있다. 이 분야에 있어서 기존의 논문들은 팔의 변위를 측정하여 진동을 제어하나 이 러한 방법들은 간헐적으로 움직이는 산업장비(예:로보트의 팔)의 과도응답을 제어하기에는 부적합하다. 따라서 본 연구에서는 이러한 장비들의 과도응답 을 효과적으로 제어할 수 있도록 가속도계를 사용, 가속도를 측정하여 변위 를 제어하고자 한다.

  • PDF

Source localization technique for metallic impact source by using phase delay between different type sensors (다종 센서간 위상 차이를 이용한 충격 위치추정 기법)

  • Choi, Kyoung-Sik;Choi, Young-Chul;Park, Jin-Ho;Kim, Whan-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.687-692
    • /
    • 2008
  • In a nuclear power plant, loose part monitoring and its diagnostic technique is one of the major issues for ensuring the structural integrity of the reactor system. Typically, accelerometers are mounted on the surface of a reactor vessel to localize impact location caused by the impact of metallic substances on the reactor system. However, in some cases, the number of the accelerometers is not enough to estimate the impact location precisely. In such a case, one of alternative plan is to utilize another type sensors that can measure the vibration of the reactor structure even though the measuring frequency ranges are different from each others. The AE sensors installed on the reactor structure can be utilized as additional sensors for loose part monitoring. In this paper, we proposed a new method to estimate impact location by using both accelerometer signal and AE signal, simultaneously. The feasibility of the proposed method is verified by an experiment. The experimental results demonstrate that we can enhance the reliability and precision of the loose part monitoring.

  • PDF

Damage Detection of a Steel Member Using Modal Testing (강부재의 손상발견을 위한 모달실험 기법)

  • Jang, Jeong Hwan;Lee, Jung Whee;Kim, Sung Kon;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.467-477
    • /
    • 1997
  • A series of experimental tests have been performed on a tube beam in which artificial damage is applied in order to address damage detectability using modal analysis. Modal parameters considered are frequency, displacement mode shape and strain mode shape CoMAC(Coordinate Modal Assurance Criterion) and Modal Vector Error have been adopted for presenting the change of displacement mode shape and strain mode shape. It is revealed strain mode shape is the most sensitive to damage.

  • PDF

Source Localization Technique for Metallic Impact Source by Using Phase Delay between Different Type Sensors (다종 센서간 위상 차이를 이용한 충격 위치추정 기법)

  • Choi, Kyoung-Sik;Choi, Young-Chul;Park, Jin-Ho;Kim, Whan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1143-1149
    • /
    • 2008
  • In a nuclear power plant, loose part monitoring and its diagnostic technique is one of the major issues for ensuring the structural integrity of the reactor system. Typically, accelerometers are mounted on the surface of a reactor vessel to localize impact location cavsed by the impact of metallic substances on the reactor system. However, in some cases, the number of the accelerometers is not enough to estimate the impact location precisely. In such a case, one of alternative plan is to utilize another type sensors that can measure the vibration of the reactor structure even though the measuring frequency ranges are different from each others. The AE sensors installed on the reactor structure can be utilized as additional sensors for loose part monitoring. In this paper, we proposed a new method to estimate impact location by using both accelerometer signal and AE signal, simultaneously. The feasibility of the proposed method is verified by an experiment. The experimental results demonstrate that we can enhance the reliability and precision of the loose part monitoring.

Design of an Initial-position Update Mooring Alignment Algorithm for Dual-axis Rotational INS Using a Kalman Filter (칼만 필터를 이용한 2축 회전형 관성항법장치의 초기위치 보정 정박 중 정렬 알고리즘 설계)

  • Kyung-don Ryu
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.379-385
    • /
    • 2024
  • INS(inertial navigation system) aligns itself using gravity and Earth's rotational rate from accelerometers and gyro sensors when stationary. Typically, ZUPT(zero velocity update), which is based on a linear error model Kalman filter, is used when it is stationary. However, such algorithms assume stationary conditions, leading to increased alignment errors or filter divergence during maritime mooring due to wave-induced motion. This paper designs a mooring alignment algorithm for maritime platforms using a Kalman filter, which uses large heading angle error model and an initial position correction technique. And it is validated by simulation. Furthermore, it is confirmed that applying this to a rotational INS dramatically improves performance through the principle of bias cancellation.