• Title/Summary/Keyword: 가속노화

Search Result 99, Processing Time 0.031 seconds

The Effects of Physical Aging of PSF/AS4 Laminate on Fatigue (PSF/AS4 복합재료의 가속노화가 피로강도에 미치는 영향)

  • Kim, Hyung-Won
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.1-6
    • /
    • 2006
  • The effects of aging on fatigue of PSF/AS4 laminates tvas studied using the new energy release rate analysis. The analysis by the variational mechanics has been useful in providing fracture mechanics interpretation of matrix microcracking in cross-ply laminates. This paper describes the changes of the critical energy release rate ${\Delta}Gmc$(microcracking toughness) about the variation of the aging period during fatigue loading. The master plot by modified Pans-law gives a characterization of a material system's resistance to microcrack formation. PSF/AS4 $[0/902]_s$ laminates were aged at four different temperatures based on the glass transition temperature for 60 days. At all temperatures, the toughness decreased with aging time. The decrease of the toughness at higher temperature was faster than at lower temperature. To assess the effects of aging on fatigue, the unaged laminates were compared with the laminates which were aged for 60 days at $170^{\circ}C$ near $180^{\circ}C\;T_g$. The slope of dD/dN versus A 6u, of the aged laminates was lower than that of the unaged laminates. There was a significant shift of the aged data to formation of microcracks at the lower values of ${\Delta}G_m$.

Study on the Experimental Aging Estimation Technique for HTPB based Solid Propellant Considering Post Curing Effect (후경화를 고려한 HTPB 고체 추진제의 실험적 노화평가 기법 연구)

  • Jung, Gyoo Dong;Park, Jae Beom;Kim, Shinhoe
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.51-57
    • /
    • 2019
  • Post curing effects are estimated by specimen tests. Propellant specimen accelerated aging tests are performed when post curing is estimated to be complete and the coefficients of Arrhenius aging equations are acquired. Simulated motors with cylindrical grain are designed and fabricated to confirm the application. Accelerated aging tests are conducted, and aged properties are measured and estimated for the inner bore, center and bond parts of the grain. The measured aging ratios of the modulus are compared with the ones predicted by the equations. As the results, the accelerated aging equations predict well the propellant aging trends; however, some differences are observed at the bond part. Therefore, the specimen extraction part must be carefully chosen to suit the test purpose when a rocket motor grain is used for the aging test.

Arrhenius Kinetic Constants Analysis of BKNO3 under Accelerated Aging (가속노화에 따른 BKNO3의 아레니우스 동역학 상수 분석)

  • Jang, Seung-gyo;Kim, Jun-hyung;Ryu, Byung-tae;Hwang, Jung-min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.34-39
    • /
    • 2016
  • Arrhenius kinetic constants, the activation energy and the pre-exponential factor, of energetic material $BKNO_3$ are estimated using Differential Scanning Calorimetry (DSC). Different from the conventional way, the activation energy was estimated more precisely through DSC aging trial, and the consumed fraction by heat was calculated by comparing the integration of heat flow. We suggested the condition of accelerated aging test for the energetic material $BKNO_3$ and reconsidered the meaning of the thermal accelerated aging.

Temperature and Humidity Aging Characteristics of Composite Solid Propellant (혼합형 고체 추진제 온$cdot$습도 노화 특성)

  • Lee Kyung-Joo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.46-53
    • /
    • 2005
  • We have analyzed the temperature and humidity aging test results of a composite solid propellant. The temperature aging test was performed to evaluate the storage life of a propellant, while the humidity aging test could provide the hygroscopicity of Ammonium Perchlorate(AP) exposed to .elative humidity (RH) 10, 30, $50\%$ environment. A specimen was used in the temperature test, and a block of propellant from the actual motor was used in the humidity test. We report that the 4-month storing at 60 degree is equivalent to the 10-year 60 degree condition. The composite solid propellant with HTPB binder showed signs of hardening with time lapse but the effect of humidity up to RH $50\%$ was not noticeable.

Natural Aging Properties Analysis of HTPB Propellant (HTPB계 고체추진제의 자연노화 물성 분석)

  • Park, Jung-Ho;Ryu, Nam-Sun;Park, Jae-Beom;Jung, Gyoo-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • Hydroxy-terminated polybutadiene (HTPB) propellants of solid rocket motors age differently under different storage temperatures. The shelf life of a solid rocket motor depends on the aging ratio of the HTPB propellant; it can be estimated through the viscoelastic properties by an aging test. This study analyzed the initial and natural aging properties during long-term storage. The initial properties were obtained from characterization and accelerated test results. The test results were obtained by analyzing the strain on cylindrical grains when a thermal load was applied.

Study on Aging Characteristics of Thru-Bulkhead Initiator (격벽착화기 노화특성 연구)

  • Kang, Wonkyu;Jang, Seung-gyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.43-51
    • /
    • 2020
  • After the accelerated aging, the bulkhead initiator using high explosives was carried out to verify aging characteristics. The Thru-Bulkhead Initiator operates by transmitting shock-wave generated from micro-initiator to the acceptor and the ignition explosives through the bulkhead. In order to evaluate the life-time of the product, the accelerated aging condition was set according to the life-time, and the ignition performance of the sample was measured every 10 cycles by measuring the delay time and the maximum pressure through the 10cc closed bomb test. In addition, variance analysis was used to determine aging.

Storage Reliability Evaluation of Engine Assembly (엔진 조립체의 저장 신뢰도 평가)

  • Park, Jong-Won;Chang, Mu-Seong;Park, Tae-Kook;Kim, You-Il;Kim, Sun Je
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.157-159
    • /
    • 2017
  • This paper presents a storage reliability evaluation method based on the accelerated degradation test for the engine assembly and parts of the guided missile. The test of the engine assembly is performed at accelerated conditions equivalent to the real storage period, and then the aging condition of parts is checked. For engine parts, performance degradation characteristics are measured periodically at the accelerated conditions and failure times are predicted at each condition. Storage lifetime at normal use conditions is predicted using an accelerated model and failure times at all accelerated conditions.

  • PDF

AC Breakdown Voltage Characteristics of 22.9kV TR XLPE Power Cable Before and After 14days Cyclic Aging and AWTT (14주기 열화 및 AWTT에 따른 22.9kV TR CNCV-W 전력케이블의 교류파괴전압 특성분석)

  • Kim, We-Young;Heo, Jong-Cheol;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1507-1508
    • /
    • 2006
  • XLPE 절연 전력케이블의 제조과정에서 발생하는 가교부산물을 제거할 목적으로 14주기노화를 실시하며, XLPE 절연체에 발생하는 수트리를 가속 발생 성장시킬 목적으로 가속수트리 열화를 실시한다. 22.9kV 트리억제형(TR CNCV-W) 케이블에 대하여 14주기노화 전과 후, 120, 240, 360일 가속수트리(AWTT) 후의 파괴전압을 분석하였다. 14주기노화는 상승효과와 감소효과가 비슷하게 작용하는 것으로 나타났으며, 240일 AWTT 이후에 노화가 가속되는 것으로 나타났다.

  • PDF

Study on the Performance Evaluation of the Explosive Bolt that has been Natural Aging (자연 노화된 폭발볼트의 성능 평가에 관한 연구)

  • Kim, Dongjin;Jeong, Donghee;Lee, Yeungjo;Lee, Youngwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.84-90
    • /
    • 2017
  • Explosive bolt is coupled in a variety of guided weapons and space projectiles, to perform the separation function. Thus, the role of the explosive bolt in guided weapons systems is very important, as it can cause failure of the entire system in the case of mission failure. For this reason, the design life prediction for explosive bolt is highly and frequently required recently, but its accurate prediction method has not been presented. In order to apply the existing accelerated aging process, we should know the activation energy and the acceleration factor of the explosive bolt. Since the information required for accelerated aging is not presently secured, it is difficult to predict the design life of explosive. Thus, in the present study, we have evaluated the performance of actual explosive bolts in the condition of natural aging over 10 years in order to present a minimum design life.

Nondestructive Characterization of Degradation of EPDM Rubber for Automotive Radiator Hoses (자동차 냉각기 호스용 EPDM고무의 노화에 대한 비파괴 특성평가)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Choi, Youn-Joung;Shin, Sei-Moon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.368-376
    • /
    • 2005
  • Coolant rubber hoses for automobile radiators can be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. In this study, for EPDM(ethylene-propylene diene monomer) rubber conventionally used as a radiator hose material the aging behaviors of the skin part due to thermo-oxidative and electro-chemical stresses were nondestructively evaluated. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain. On account of the penetration of coolant liquid into the skin part the weight of rubber specimens degraded by electro-chemical degradation(ECD) test increased, whereas their. failure strain and IRHD hardness decreased largely. The penetration of coolant liquid seemed to induce some changes in inner structure and micro hardness distribution of the rubbers. Consequently, EPDM rubbers degraded by thermo-oxidative aging and ECD could be characterized nondestructively by micro-hardness and chemical structure analysis methods.