• Title/Summary/Keyword: 가소제

Search Result 294, Processing Time 0.042 seconds

Study on Degradation Characteristics and Chemical Cleaning Methods of Plasticized PVC for Conservation of Plastic Artifact (연질 PVC 작품 보존을 위한 가소제 종류별 열화 특성 및 화학적 세척법 연구)

  • Lee, Na Ra;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.35 no.2
    • /
    • pp.159-168
    • /
    • 2019
  • Plasticizers, which are added to plastics, can cause exudation, which means that the plasticizer comes out from surface of the plastics. This causes the surface of plastic artworks to become sticky, and this allows dust and pollutants to become attached to the surface. Therefore, in this study, the degradation characteristics and chemical cleaning methods of each type of plasticizer are evaluated using PVC specimens. To evaluate the degradation characteristics and chemical cleaning methods, microscopic observation, chromaticity and weight measurement, and FT-IR spectroscopy were performed. The results showed that PVCs containing different plasticizers have different degradation patterns. Especially, the PVC containing TOTM showed discoloration and exudation. In the evaluation of the chemical cleaning methods, ethyl alcohol and KOH solution showed good effects, but their stability was not good. Surfactant was found to have a good cleaning effect and stability as a cleaner for exudated plasticizers.

A Trend and Market in Eco-friendly Plasticizers: Review and Prospective (친환경 가소제의 시장과 동향)

  • Oh, Eunyoung;Kim, Baek-hwan;Suhr, Jonghwan
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.232-241
    • /
    • 2022
  • Plasticizers are chemical additives added to polymers to have a desirable effect on mechanical properties such as processability and ductility. In this paper, we explore the use and market of eco-friendly plasticizers that can replace phthalate-based plasticizers that have been traditionally used in the plastics market. Bio plasticizers are derived primarily from biomass sources, including agricultural products, by-products and wastes. Regardless of the source of biomass, an ideal eco-friendly plasticizer should be non-toxic, have high resistance to volatilization, extraction, and migration, have good compatibility and compatibility, and be economical. The global bio plasticizer market is expected to reach USD 2.1 billion by 2030 from USD 1.3 billion in 2020, growing at a CAGR of 5.31% from 2021 to 2030.

Determination of Plasticizers in the Gasket of Glass Bottle for Bulgogi Sauces (불고기 소스용 유리병 가스켓에서의 가소제 정량)

  • Lee, Jung-Pyo;Lee, Keun-Taik
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.2
    • /
    • pp.61-65
    • /
    • 2009
  • This study was conducted to investigate the safety status of gasket of glass bottle being used for the Bulgogi sauce. The content of plasticizers in the gasket and their migrated amounts into Bulgogi sauce were determined. Among the plasticizers analyzed, only di-isodecyl phthalate (DIDP) was detected in the range between 30.6 and 35.9% from 6 samples. None of the plasticizers was detected in the sauce. Therefore, it can be concluded that the safety status of the gasket tested met the requirement of limit values as prescribed for the migration test of food packaging utensils, containers and packages of the Korea Food Code.

  • PDF

Effect of Plasticizer on Physical Properties of Poly(vinyl acetate-co-ethylene) Emulsion (Poly(vinyl acetate-co-ethylene) 에멀젼 물성에 대한 가소제 효과)

  • Choi, Yong-Hae;Lee, Won-Ki
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.459-463
    • /
    • 2009
  • In this study, physical properties of poly(vinyl acetate-co-ethylene) (VAE) emulsion were investigated by adding different amounts of di-butyl phthalate (DBP) which is a common plasticizer of VAE. The glass transition temperature $(T_g)$ of the dried plasticized VAE emulsion film, which measured by Differential Scanning Calorimeter, was decreased with increasing the DBP contents while the viscosity of the plasticized VAE emulsion was increased with the DBP contents. These results suggest that the plasticizer in the dried VAE film can prevent the strong interaction between chains, resulted by the decrease of $T_g$. In the emulsion, however, the particle sizes were swelled by the penetration of plasticizers and then its viscosity increased with the DBP content. When the DBP was added, the mechanical properties of the plasticized VAE films, such as tensile strength, elongation and creep resistance, were decreased while the water resistance was increased.

A study on radiation crosslinking of PVC for preparation of heat shrinkable tube (방사선가교에 의한 열수축성 PVC 튜브의 제조에 관한 연구)

  • 김기엽
    • Electrical & Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.354-360
    • /
    • 1993
  • 열수축성 튜브 제조에 적합한 조성을 얻기 위하여 PVC의 방사선가교에 대하여 검토하였다. 중합도가 각각 다른 PVC에 가소제, 가교제를 변화시켜 배합한 혼합물을 방사선 가교시켰을 때 가교도는 가교제, 가소제, 중합도 및 조사선량이 증가됨에 따라 증가되었다. 가교제로서는 삼관능성 단량체가 높은 가교효율을 나타내었다. 가교 PVC 필름의 열수축성은 연신배율과 수축 온도를 높여줌으로써 증가되었으나 가교제 및 가소제의 증가량에 의한 열수축성의 증가는 나타내지 않았고 저중합도 PVC의 열수축성은 극히 저조하였다.

  • PDF

Synthesis and Characterization of 1-DABTR as Insensitive Energetic Plasticizer (둔감 에너지 가소제 1-DABTR의 합성 및 특성 평가)

  • Lee, Woonghee;Kim, Minjun;Park, Youngchul;Lee, Bumjae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.32-38
    • /
    • 2017
  • Plasticizers play roles in increasing plasticity or fluidity during mixing. Representative plasticizers are DOS, DOA, IDP and BTTN. In particular, BTTN is an energy plasticizer that helps propellant performance and is widely used. However these compounds are sensitive relatively. So, in order to develop insensitive energetic plasticizer, synthesis of one of the derivatives of triazole, 4,5-bis (azido methyl)-(1-butyl)-1,2,3-triazole (1-DABTR), was studied. Also, the compound was characterized by NMR, IR spectroscopy, and physicochemical properties such as glass transition temperature, melting point, decomposition temperature, density, viscosity and impact sensitivity were measured. In addition, the heats of formation (${\Delta}H_f$) of 1-DABTR was also calculated using Gaussian 09.

Extraction Property of Plasticizer in LPG High Pressure Rubber Hose (LPG용 고압고무호스에서 가소제 추출특성)

  • Kim, Young-Gu
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.2
    • /
    • pp.156-160
    • /
    • 2004
  • The extraction rates of plasticizer of LPG high pressure rubber are studied. Submerging solvents are composed of propane, n-butane, n-pentane, n-hexane, n-heptane, propylene, 1,3-butadiene, 1-pentene, 1-hexene, ethanethiol, t-butanethiol, dimethyl sulfide, methyl ethyl sulfide. The relationship between the extraction rate of plasticizer and the descriptors of submerging solvent by using multiple linear regression is as follows; PE(wt%) = 7.5193 - 0.58500Carbon${\sharp}$ + 2.3294DB + 2364SH, (N = 13, F = 24.135, R$^2$ = 0.8894, R$_{adj}^2$ = 0.8526, Variance = 7.588) Plasticizer is well extracted by LPG composed of the high vapour pressure and polarity compounds. The mass of extracted plasticizer becomes increasing in proportion to the contents of thiol sulfur compound and unsaturated hydrocarbon such as propylene and 1,3-butadiene in LPG. While the heavier hydrocarbons are, the less the quantities of plasticizer extracted from rubber are.

Determination of Plasticizers included in Balloon by Solid Phase Microextraction and Gas Chromatography with Mass Spectrometric Detection (SPME-GC-MS를 이용하여 풍선에 포함된 가소제의 분석)

  • Park, Hyun-Mee;Kim, Ji-Hyun;Ryu, Jae-Chun;Kim, Young-Man;Lee, Kang-Bong
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.44-49
    • /
    • 2001
  • Solid-phase microextraction (SPME) with $85{\mu}m$ polyacrylate fiber, coupled to gas chromatography-mass spectrometry was used to analyze the plasticizers contained in balloon samples. The balloons were identified to be made of polyisoprene by IR spectroscopy. The plasticizers extracted from the balloon samples soaked in acetone-added water solvent for an hour were quantified by external standard method using nine kinds of plasticizers. The quantification method was validated for standard plasticizers in the range of $0.25-25{\mu}g/g$. The detection limits were $0.11-0.38{\mu}g/g$ for different plasticizers. The RSDs for the reproducibility of this quantitation method were 3.7-14.2%. A few of balloons included risky level of plasticizer concerned as and endocrine disrupter, and it is necessary to regulate these products.

  • PDF